@article{EggertRawelPawelzik2011, author = {Eggert, Kai and Rawel, Harshadrai Manilal and Pawelzik, Elke}, title = {In vitro degradation of wheat gluten fractions by Fusarium graminearum proteases}, series = {European food research and technology : official organ of the EuCheMS, Division of Food Chemistry}, volume = {233}, journal = {European food research and technology : official organ of the EuCheMS, Division of Food Chemistry}, number = {4}, publisher = {Springer}, address = {New York}, issn = {1438-2377}, doi = {10.1007/s00217-011-1566-x}, pages = {697 -- 705}, year = {2011}, abstract = {Fusarium spp. infection of cereal grain is a common problem, which leads to a dramatic loss of grain quality. The aim of the present study was to investigate the effect of Fusarium infection on the wheat storage protein gluten and its fractions, the gliadins and glutenins, in an in vitro model system. Gluten proteins were digested by F. graminearum proteases for 2, 4, 8 and 24 h, separated by Osborne fractionation and characterised by chromatographic (RP-HPLC) and electrophoretic analysis (SDS-Page). Gluten digestion by F. graminearum proteases showed in comparison with gliadins a preference for the glutenins whereas the HMW subfraction was at most affected. In comparison with a untreated control, the HMW subfraction was degraded of about 97\% after 4 h incubation with Fusarium proteases. Separate digestion of gliadin and glutenin underlined the preference for HMW-GS. Analogue to the observed change in the gluten composition, the yield of the proteins extracted changed. A higher amount of glutenin fragments was found in the gliadin extraction solution after digestion and could mask a gliadin destruction at the same time. This observation can contribute to explain the frequently reported reduced glutenin amount parallel to an increase in gliadin quantity after Fusarium infection in grains.}, language = {en} } @article{KabaMaierSchliebeOhleretal.2015, author = {Kaba, Hani E. J. and Maier, Natalia and Schliebe-Ohler, Nicole and Mayer, Yvonne and Mueller, Peter P. and van den Heuvel, Joop and Schuchhardt, Johannes and Hanack, Katja and Bilitewski, Ursula}, title = {Identification of whole pathogenic cells by monoclonal antibodies generated against a specific peptide from an immunogenic cell wall protein}, series = {Journal of microbiological methods}, volume = {108}, journal = {Journal of microbiological methods}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-7012}, doi = {10.1016/j.mimet.2014.11.003}, pages = {61 -- 69}, year = {2015}, abstract = {We selected the immunogenic cell wall beta-(1,3)-glucosyltransferase Bgl2p from Candida albicans as a target protein for the production of antibodies. We identified a unique peptide sequence in the protein and generated monoclonal anti- C. albicans Bgl2p antibodies, which bound in particular to whole C. albicans cells.}, language = {en} } @article{VillatoroWeberZuehlkeetal.2019, author = {Villatoro, Jos{\´e} Andr{\´e}s and Weber, M. and Z{\"u}hlke, Martin and Lehmann, A. and Zenichowski, Karl and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Kreuzer, O.}, title = {Structural characterization of synthetic peptides using electrospray ion mobility spectrometry and molecular dynamics simulations}, series = {International Journal of Mass Spectrometry}, volume = {436}, journal = {International Journal of Mass Spectrometry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1387-3806}, doi = {10.1016/j.ijms.2018.10.036}, pages = {108 -- 117}, year = {2019}, abstract = {Electrospray ionization-ion mobility spectrometry was employed for the determination of collision cross sections (CCS) of 25 synthetically produced peptides in the mass range between 540-3310 Da. The experimental measurement of the CCS is complemented by their calculation applying two different methods. One prediction method is the intrinsic size parameter (ISP) method developed by the Clemmer group. The second new method is based on the evaluation of molecular dynamics (MD) simulation trajectories as a whole, resulting in a single, averaged collision cross-section value for a given peptide in the gas phase. A high temperature MD simulation is run in order to scan through the whole conformational space. The lower temperature conformational distribution is obtained through thermodynamic reweighting. In the first part, various correlations, e.g. CCS vs. mass and inverse mobility vs. m/z correlations, are presented. Differences in CCS between peptides are also discussed in terms of their respective mass and m/z differences, as well as their respective structures. In the second part, measured and calculated CCS are compared. The agreement between the prediction results and the experimental values is in the same range for both calculation methods. While the calculation effort of the ISP method is much lower, the MD method comprises several tools providing deeper insights into the conformations of peptides. Advantages and limitations of both methods are discussed. Based on the separation of two pairs of linear and cyclic peptides of virtually the same mass, the influence of the structure on the cross sections is discussed. The shift in cross section differences and peak shape after transition from the linear to the cyclic peptide can be well understood by applying different MD tools, e.g. the root-mean-square deviation (RMSD) and the root mean square fluctuation (RMSF). (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} }