@misc{FraschettiPohl2017, author = {Fraschetti, Federico and Pohl, Martin}, title = {Two-zone model for the broadband crab nebula spectrum}, series = {The European physical journal : Web of Conferences : proceedings}, volume = {136}, journal = {The European physical journal : Web of Conferences : proceedings}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {2100-014X}, doi = {10.1051/epjconf/201713602009}, pages = {5}, year = {2017}, abstract = {We develop a simple two-zone interpretation of the broadband baseline Crab nebula spectrum between 10(-5) eV and similar to 100 TeV by using two distinct log-parabola energetic electrons distributions. We determine analytically the very-high energy photon spectrum as originated by inverse-Compton scattering of the far-infrared soft ambient photons within the nebula off a first population of electrons energized at the nebula termination shock. The broad and flat 200 GeV peak jointly observed by Fermi/LAT and MAGIC is naturally reproduced. The synchrotron radiation from a second energetic electron population explains the spectrum from the radio range up to similar to 10 keV. We infer from observations the energy dependence of the microscopic probability of remaining in proximity of the shock of the accelerating electrons.}, language = {en} } @misc{BarniskeOskinovaHamann2016, author = {Barniske, Andreas and Oskinova, Lida and Hamann, Wolf-Rainer}, title = {Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas (vol 486, pg 971, 2008)}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {587}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/200809568e}, pages = {1}, year = {2016}, language = {en} } @misc{MaierWolfKeiligetal.2018, author = {Maier, Philipp and Wolf, J{\"u}rgen and Keilig, Thomas and Krabbe, Alfred and Duffard, Rene and Ortiz, Jose-Luis and Klinkner, Sabine and Lengowski, Michael and M{\"u}ller, Thomas and Lockowandt, Christian and Krockstedt, Christian and Kappelmann, Norbert and Stelzer, Beate and Werner, Klaus and Geier, Stephan and Kalkuhl, Christoph and Rauch, Thomas and Schanz, Thomas and Barnstedt, J{\"u}rgen and Conti, Lauro and Hanke, Lars}, title = {Towards a European Stratospheric Balloon Observatory}, series = {Ground-based and Airborne Telescopes VII}, volume = {10700}, journal = {Ground-based and Airborne Telescopes VII}, publisher = {SPIE-INT Soc Optical Engineering}, address = {Bellingham}, isbn = {978-1-5106-1954-8}, issn = {0277-786X}, doi = {10.1117/12.2319248}, pages = {12}, year = {2018}, abstract = {This paper presents the concept of a community-accessible stratospheric balloon-based observatory that is currently under preparation by a consortium of European research institutes and industry. We present the technical motivation, science case, instrumentation, and a two-stage image stabilization approach of the 0.5-m UV/visible platform. In addition, we briefly describe the novel mid-sized stabilized balloon gondola under design to carry telescopes in the 0.5 to 0.6 m range as well as the currently considered flight option for this platform. Secondly, we outline the scientific and technical motivation for a large balloon-based FIR telescope and the ESBO DS approach towards such an infrastructure.}, language = {en} } @misc{StichBeta2019, author = {Stich, Michael and Beta, Carsten}, title = {Time-Delay Feedback Control of an Oscillatory Medium}, series = {Biological Systems: Nonlinear Dynamics Approach}, volume = {20}, journal = {Biological Systems: Nonlinear Dynamics Approach}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-16585-7}, issn = {2199-3041}, doi = {10.1007/978-3-030-16585-7_1}, pages = {1 -- 17}, year = {2019}, abstract = {The supercritical Hopf bifurcation is one of the simplest ways in which a stationary state of a nonlinear system can undergo a transition to stable self-sustained oscillations. At the bifurcation point, a small-amplitude limit cycle is born, which already at onset displays a finite frequency. If we consider a reaction-diffusion system that undergoes a supercritical Hopf bifurcation, its dynamics is described by the complex Ginzburg-Landau equation (CGLE). Here, we study such a system in the parameter regime where the CGLE shows spatio-temporal chaos. We review a type of time-delay feedback methods which is suitable to suppress chaos and replace it by other spatio-temporal solutions such as uniform oscillations, plane waves, standing waves, and the stationary state.}, language = {en} } @misc{Rastogi2019, author = {Rastogi, Abhishake}, title = {Tikhonov regularization with oversmoothing penalty for linear statistical inverse learning problems}, series = {AIP Conference Proceedings : third international Conference of mathematical sciences (ICMS 2019)}, volume = {2183}, journal = {AIP Conference Proceedings : third international Conference of mathematical sciences (ICMS 2019)}, publisher = {American Institute of Physics}, address = {Melville}, isbn = {978-0-7354-1930-8}, issn = {0094-243X}, doi = {10.1063/1.5136221}, pages = {4}, year = {2019}, abstract = {In this paper, we consider the linear ill-posed inverse problem with noisy data in the statistical learning setting. The Tikhonov regularization scheme in Hilbert scales is considered in the reproducing kernel Hilbert space framework to reconstruct the estimator from the random noisy data. We discuss the rates of convergence for the regularized solution under the prior assumptions and link condition. For regression functions with smoothness given in terms of source conditions the error bound can explicitly be established.}, language = {en} } @misc{LiermannHamannOskinova2014, author = {Liermann, Angelika and Hamann, Wolf-Rainer and Oskinova, Lida}, title = {The quintuplet cluster III. Hertzsprung-Russell diagram and cluster age (vol 540, pg A14, 2012)}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {563}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201117534e}, pages = {2}, year = {2014}, language = {en} } @misc{DolezalovaKubatovaKubatetal.2019, author = {Dolezalova, Barbora and Kubatova, Brankica and Kubat, Jiri and Hamann, Wolf-Rainer}, title = {The Quasi-WR Star HD 45166 Revisited}, series = {Radiative signatures from the cosmos}, volume = {519}, journal = {Radiative signatures from the cosmos}, publisher = {Astronomical soc pacific}, address = {San Fransisco}, isbn = {978-1-58381-925-8}, issn = {1050-3390}, pages = {197 -- 200}, year = {2019}, abstract = {We studied the wind of the quasi Wolf-Rayet (qWR) star HD 45166. As a first step we modeled the observed UV spectra of this star by means of the state-of-the-art Potsdam Wolf-Rayet (PoWR) atmosphere code. We inferred the wind parameters and compared them with previous findings.}, language = {en} } @misc{KomarovPikovskij2015, author = {Komarov, Maxim and Pikovskij, Arkadij}, title = {The Kuramoto model of coupled oscillators with a bi-harmonic coupling function (vol 289, pg 18, 2014)}, series = {Physica :D, Nonlinear phenomena}, volume = {313}, journal = {Physica :D, Nonlinear phenomena}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-2789}, doi = {10.1016/j.physd.2015.11.001}, pages = {117 -- 117}, year = {2015}, language = {en} } @misc{RychkovStojharovKuznetsovetal.2018, author = {Rychkov, Andrey and Stojharov, Valery and Kuznetsov, Alexey and Rychkov, Dmitry}, title = {The influence of recrystallization regimes on electret charge stability in low-density polyethylene films}, series = {2018 IEEE 2nd International Conference on Dielectrics (ICD)}, journal = {2018 IEEE 2nd International Conference on Dielectrics (ICD)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-6389-9}, doi = {10.1109/ICD.2018.8514638}, pages = {4}, year = {2018}, abstract = {The electret state stability in nonpolar semicrystalline polymers is largely determined by the traps located at crystalline/ amorphous phase interfaces. Thus, the thermal history of such polymers should considerably influence their electret properties. In the present work, we investigate how recrystallization influences charge stability in low-density polyethylene corona electrets. It has been found that electret charge stability in quenched samples is higher than in slowly-crystallized ones. Phenomenologicaly, this can be explained by the increased number of deeper traps in samples with smaller crystallite size.}, language = {en} } @misc{ParsonsSchuesslerGarrigouxetal.2017, author = {Parsons, R. D. and Sch{\"u}ssler, F. and Garrigoux, T. and Balzer, A. and F{\"u}ssling, Matthias and Hoischen, Clemens and Holler, M. and Mitchell, A. and P{\"u}hlhofer, G. and Rowell, G. and Wagner, S. and Bissaldi, E. and Tam, P. H. T.}, title = {The HESS II GRB Observation Scheme}, series = {AIP conference proceedings / American Institute of Physics}, volume = {1792}, journal = {AIP conference proceedings / American Institute of Physics}, number = {1}, publisher = {American Institute of Physics}, address = {Melville}, organization = {HESS Collaboration}, isbn = {978-0-7354-1456-3}, issn = {0094-243X}, doi = {10.1063/1.4968980}, pages = {5}, year = {2017}, abstract = {Gamma-ray bursts (GRBs) are some of the Universe's most enigmatic and exotic events. However, at energies above 10 GeV their behaviour remains largely unknown. Although space based telescopes such as the Fermi-LAT have been able to detect GRBs in this energy range, their photon statistics are limited by the small detector size. Such limitations are not present in ground based gamma-ray telescopes such as the H.E.S.S. experiment, which has now entered its second phase with the addition of a large 600 m2 telescope to the centre of the array. Such a large telescope allows H.E.S.S. to access the sub 100-GeV energy range while still maintaining a large effective collection area, helping to potentially probe the short timescale emission of these events. We present a description of the H.E.S.S. GRB observation programme, summarising the performance of the rapid GRB repointing system and the conditions under which GRB observations are initiated. Additionally we will report on the GRB follow-ups made during the 2014-15 observation campaigns.}, language = {en} } @misc{ShpritsHorneKellermanetal.2018, author = {Shprits, Yuri Y. and Horne, Richard B. and Kellerman, Adam C. and Drozdov, Alexander}, title = {The dynamics of Van Allen belts revisited}, series = {Nature physics}, volume = {14}, journal = {Nature physics}, number = {2}, publisher = {Nature Publ. Group}, address = {London}, issn = {1745-2473}, doi = {10.1038/nphys4350}, pages = {102 -- 103}, year = {2018}, abstract = {In an effort to explain the formation of a narrow third radiation belt at ultra-relativistic energies detected during a solar storm in September 20121, Mann et al.2 present simulations from which they conclude it arises from a process of outward radial diffusion alone, without the need for additional loss processes from higher frequency waves. The comparison of observations with the model in Figs 2 and 3 of their Article clearly shows that even with strong radial diffusion rates, the model predicts a third belt near L* = 3 that is twice as wide as observed and approximately an order of magnitude more intense. We therefore disagree with their interpretation that "the agreement between the absolute fluxes from the model and those observed by REPT [the Relativistic Electron Proton Telescope] shown on Figs 2 and 3 is excellent." Previous studies3 have shown that outward radial diffusion plays a very important role in the dynamics of the outer belt and is capable of explaining rapid reductions in the electron flux. It has also been shown that it can produce remnant belts (Fig. 2 of a long-term simulation study4). However, radial diffusion alone cannot explain the formation of the narrow third belt at multi-MeV during September 2012. An additional loss mechanism is required. Higher radial diffusion rates cannot improve the comparison of model presented by Mann et al. with observations. A further increase in the radial diffusion rates (reported in Fig. 4 of the Supplementary Information of ref. 2) results in the overestimation of the outer belt fluxes by up to three orders of magnitude at energy of 3.4 MeV. Observations at 2 MeV, where belts show only a two-zone structure, were not presented by Mann et al. Moreover, simulations of electrons with energies below 2 MeV with the same diffusion rates and boundary conditions used by the authors would probably produce very strong depletions down to L = 3-3.5, where L is radial distance from the centre of the Earth to the given field line in the equatorial plane. Observations do not show a non-adiabatic loss below L ∼ 4.5 for 2 MeV. Such different dynamics between 2 MeV and above 4 MeV at around L = 3.5 are another indication that particles are scattered by electromagnetic ion cyclotron (EMIC) waves that affect only energies above a certain threshold. Observations of the phase space density (PSD) provide additional evidence for the local loss of electrons. Around L* = 3.5-4 PSD shows significant decrease by an order of magnitude starting in the afternoon of 3 September (Fig. 1a), while PSD above L* = 4 is increasing. The minimum in PSD between L* = 3.5-4 continues to decrease until 4 September. This evolution demonstrates that the loss is not produced by outward diffusion. Radial diffusion cannot produce deepening minima, as it works to smooth gradients. Just as growing peaks in PSD show the presence of localized acceleration5, deepening minima show the presence of localized loss. Figure 1: Time evolution of radiation profiles in electron PSD at relativistic and ultra-relativistic energies. figure 1 a, Similar to Supplementary Fig. 3 of ref. 2, but using TS07D model10 and for μ = 2,500 MeV G-1, K = 0.05 RE G0.5 (where RE is the radius of the Earth). b, Similar to Supplementary Fig. 3 of ref. 2, but using TS07D model and for μ = 700 MeV G-1, corresponding to MeV energies in the heart of the belt. Minimum in PSD in the heart of the multi-MeV electron radiation belt between 3.5 and 4 RE deepening between the afternoon of 3 September and 5 September clearly show that the narrow remnant belt at multi-MeV below 3.5 RE is produced by the local loss. Full size image The minimum in the outer boundary is reached on the evening of 2 September. After that, the outer boundary moves up, while the minimum decreases by approximately an order of magnitude, clearly showing that this main decrease cannot be explained by outward diffusion, and requires additional loss processes. The analysis of profiles of PSD is a standard tool used, for example, in the study about electron acceleration5 and routinely used by the entire Van Allen Probes team. In the Supplementary Information, we show that this analysis is validated by using different magnetic field models. The Supplementary Information also shows that measurements are above background noise. Deepening minima at multi-MeV during the times when the boundary flux increases are clearly seen in Fig. 1a. They show that there must be localized loss, as radial diffusion cannot produce a minimum that becomes lower with time. At lower energies of 1-2 MeV, which corresponds to lower values of the first adiabatic invariant μ (Fig. 1b), the profiles are monotonic between L* = 3-3.5, consistent with the absence of scattering by EMIC waves that affect only electrons above a certain energy threshold6,7,8,9. In summary, the results of the modelling and observations presented by Mann et al. do not lend support to the claim of explaining the dynamics of the ultra-relativistic third Van Allen radiation belt in terms of an outward radial diffusion process alone. While the outward radial diffusion driven by the loss to the magnetopause2 is certainly operating during this storm, there is compelling observational and modelling2,6 evidence that shows that very efficient localized electron loss operates during this storm at multi-MeV energies, consistent with localized loss produced by EMIC waves.}, language = {en} } @misc{OverholtMelottPohl2012, author = {Overholt, Andrew C. and Melott, Adrian L. and Pohl, Martin}, title = {Testing the link between terrestrial climate change and galactic spiral-arm transit (vol 705, pg L101, 2009)}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {751}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.1088/2041-8205/751/2/L45}, pages = {2}, year = {2012}, language = {en} } @misc{LouposDamigosAmditisetal.2017, author = {Loupos, Konstantinos and Damigos, Yannis and Amditis, Angelos and Gerhard, Reimund and Rychkov, Dmitry and Wirges, Werner and Schulze, Manuel and Lenas, Sotiris-Angelos and Chatziandreoglou, Christos and Malliou, Christina and Tsaoussidis, Vassilis and Brady, Ken and Frankenstein, Bernd}, title = {Structural health monitoring system for bridges based on skin-like sensor}, series = {IOP conference series : Materials science and engineering}, volume = {236}, journal = {IOP conference series : Materials science and engineering}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1757-8981}, doi = {10.1088/1757-899X/236/1/012100}, pages = {10}, year = {2017}, abstract = {Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10\%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system.}, language = {en} } @misc{CheilakouTsopelasAnastasopoulosetal.2018, author = {Cheilakou, E. and Tsopelas, N. and Anastasopoulos, A. and Kourousis, D. and Rychkov, Dmitry and Gerhard, Reimund and Frankenstein, B. and Amditis, A. and Damigos, Y. and Bouklas, C.}, title = {Strain monitoring system for steel and concrete structures}, series = {Procedia Structural Integrity}, volume = {10}, journal = {Procedia Structural Integrity}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2452-3216}, doi = {10.1016/j.prostr.2018.09.005}, pages = {25 -- 32}, year = {2018}, abstract = {The present work is part of a collaborative H2020 European funded research project called SENSKIN, that aims to improve Structural Health Monitoring (SHM) for transport infrastructure through the development of an innovative monitoring and management system for bridges based on a novel, inexpensive, skin-like sensor. The integrated SENSKIN technology will be implemented in the case of steel and concrete bridges, and tested, field-evaluated and benchmarked on actual bridge environment against a conventional health monitoring solution developed by Mistras Group Hellas. The main objective of the present work is to implement the autonomous, fully functional strain monitoring system based on commercially available off-the-shelf components, that will be used to accomplish direct comparison between the performance of the innovative SENSKIN sensors and the conventional strain sensors commonly used for structural monitoring of bridges. For this purpose, the mini Structural Monitoring System (mini SMS) of Physical Acoustics Corporation, a comprehensive data acquisition unit designed specifically for long-term unattended operation in outdoor environments, was selected. For the completion of the conventional system, appropriate foil-type strain sensors were selected, driven by special conditioners manufactured by Mistras Group. A comprehensive description of the strain monitoring system and its peripheral components is provided in this paper. For the evaluation of the integrated system's performance and the effect of various parameters on the long-term behavior of sensors, several test steel pieces instrumented with different strain sensors configurations were prepared and tested in both laboratory and field ambient conditions. Furthermore, loading tests were performed aiming to validate the response of the system in monitoring the strains developed in steel beam elements subject to bending regimes. Representative results obtained from the above experimental tests have been included in this paper as well.}, language = {en} } @misc{FinchBrakerReindletal.2019, author = {Finch, Nicolle L. and Braker, I. P. and Reindl, Nicole and Barstow, Martin A. and Casewell, Sarah L. and Burleigh, M. and Kupfer, Thomas and Kilkenny, D. and Geier, Stephan and Schaffenroth, Veronika and Bertolami Miller, Marcelo Miguel and Taubenberger, Stefan and Freudenthal, Joseph}, title = {Spectral Analysis of Binary Pre-white Dwarf Systems}, series = {Radiative signatures from the cosmos}, volume = {519}, journal = {Radiative signatures from the cosmos}, publisher = {Astronomical soc pacific}, address = {San Fransisco}, isbn = {978-1-58381-925-8}, issn = {1050-3390}, pages = {231 -- 238}, year = {2019}, abstract = {Short period double degenerate white dwarf (WD) binaries with periods of less than similar to 1 day are considered to be one of the likely progenitors of type Ia supernovae. These binaries have undergone a period of common envelope evolution. If the core ignites helium before the envelope is ejected, then a hot subdwarf remains prior to contracting into a WD. Here we present a comparison of two very rare systems that contain two hot subdwarfs in short period orbits. We provide a quantitative spectroscopic analysis of the systems using synthetic spectra from state-of-the-art non-LTE models to constrain the atmospheric parameters of the stars. We also use these models to determine the radial velocities, and thus calculate dynamical masses for the stars in each system.}, language = {en} } @misc{MawassAroraSandigetal.2018, author = {Mawass, Mohamad-Assaad and Arora, Ashima and Sandig, Oliver and Luo, Chen and Unal, Ahmet A. and Radu, Florin and Valencia, Sergio and Kronast, Florian}, title = {Spatially resolved investigation of all optical magnetization switching in TbFe alloys}, series = {2018 IEEE International Magnetics Conference (INTERMAG)}, journal = {2018 IEEE International Magnetics Conference (INTERMAG)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-6425-4}, doi = {10.1109/INTMAG.2018.8508211}, pages = {1}, year = {2018}, abstract = {High storage density magnetic devices rely on the precise, reliable and ultrafast switching times of the magnetic states. Optical control of magnetization using femtosecond laser without applying any external magnetic field offers the advantage of switching magnetic states at ultrashort time scales, which has attracted a significant attention. Recently, it has been reported and demonstrated the,so-called, all-optical helicity-dependent switching (AO-HDS) in which a circularly polarized femtosecond laser pulse switches the magnetization of a ferromagnetic thin film as function of laser helicity [1]. Afterward, in more recent studies, it has been reported that AO-HDS is a general phenomenon existing in magnetic materials ranging from rare earth - transition metals ferrimagnetic (e.g. alloys, multilayers and hetero-structures system) to even ferromagnetic thin films. Among numerous studies in the literature which are discussing the microscopic origin of AO-HDS in ferromagnets or ferrimagnetic alloys, the most renowned concepts are momentum transfer via Inverse Faraday Effect (IFE) [1-3]and the concept of preferential thermal demagnetization for one magnetization direction by heating close to Tc (Curie temperature) in the presence of magnetic circular dichroism (MCD) [4-6]. In this study, we investigate all-optical magnetic switching using a stationary femtosecond laser spot (3-5 μm) in TbFe alloys via photoemission electron microscopy (PEEM) and x-ray magnetic circular dichroism (XMCD) with a spatial resolution of approximately 30 nm. We spatially characterize the effect of laser heating and local temperature profile created across the laser spot on AO-HDS in TbFe thin films. We find that AO-HDS occurs only in a `ring' shaped region surrounding the thermally demagnetized region formed by the laser spot and the formation of switched domains relies further on thermally induced domain wall motion. Our temperature dependent measurements highlight the importance of attainin...}, language = {en} } @misc{SteteSchossauKoopmanetal.2018, author = {Stete, Felix and Schossau, Phillip Gerald and Koopman, Wouter-Willem Adriaan and Bargheer, Matias}, title = {Size Dependence of the Coupling Strength in Plasmon-Exciton Nanoparticles}, series = {Quantum Nano-Photonics}, journal = {Quantum Nano-Photonics}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-024-1546-9}, issn = {1871-465X}, doi = {10.1007/978-94-024-1544-5_26}, pages = {381 -- 383}, year = {2018}, abstract = {The coupling between molecular excitations and nanoparticles leads to promising applications. It is for example used to enhance the optical cross-section of molecules in surface enhanced Raman scattering, Purcell enhancement or plasmon enhanced dye lasers. In a coupled system new resonances emerge resulting from the original plasmon (ωpl) and exciton (ωex) resonances as ω±=12(ωpl+ωex)±14(ωpl-ωex)2+g2---------------√, (1) where g is the coupling parameter. Hence, the new resonances show a separation of Δ = ω+ - ω- from which the coupling strength can be deduced from the minimum distance between the two resonances, Ω = Δ(ω+ = ω-).}, language = {en} } @misc{SteteKoopmanBargheer2018, author = {Stete, Felix and Koopman, Wouter-Willem Adriaan and Bargheer, Matias}, title = {Signatures of strong coupling on nanoparticles}, series = {Quantum Nano-Photonics}, journal = {Quantum Nano-Photonics}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-024-1546-9}, issn = {1871-465X}, doi = {10.1007/978-94-024-1544-5_53}, pages = {445 -- 447}, year = {2018}, abstract = {The electromagnetic coupling of molecular excitations to plasmonic nanoparticles offers a promising method to manipulate the light-matter interaction at the nanoscale. Plasmonic nanoparticles foster exceptionally high coupling strengths, due to their capacity to strongly concentrate the light-field to sub-wavelength mode volumes. A particularly interesting coupling regime occurs, if the coupling increases to a level such that the coupling strength surpasses all damping rates in the system. In this so-called strong-coupling regime hybrid light-matter states emerge, which can no more be divided into separate light and matter components. These hybrids unite the features of the original components and possess new resonances whose positions are separated by the Rabi splitting energy h Omega. Detuning the resonance of one of the components leads to an anticrossing of the two arising branches of the new resonances omega(+) and omega(-) with a minimal separation of Omega = omega(+) - omega(-).}, language = {en} } @misc{ClarkMixEbyetal.2018, author = {Clark, Peter U. and Mix, Alan C. and Eby, Michael and Levermann, Anders and Rogelj, Joeri and Nauels, Alexander and Wrathall, David J.}, title = {Sea-level commitment as a gauge for climate policy}, series = {Nature climate change}, volume = {8}, journal = {Nature climate change}, number = {8}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-018-0226-6}, pages = {653 -- 655}, year = {2018}, abstract = {A well-defined relationship between global mean sea-level rise and cumulative carbon emissions can be used to inform policy about emission limits to prevent dangerous and essentially permanent anthropogenic interference with the climate system.}, language = {en} } @misc{CaesarMcCarthyThornalleyetal.2022, author = {Caesar, Levke and McCarthy, Gerard D. and Thornalley, David J. R. and Cahill, Niamh and Rahmstorf, Stefan}, title = {Reply to: Atlantic circulation change still uncertain}, series = {Nature geoscience}, volume = {15}, journal = {Nature geoscience}, number = {3}, publisher = {Nature Publ. Group}, address = {London}, issn = {1752-0894}, doi = {10.1038/s41561-022-00897-3}, pages = {168 -- 170}, year = {2022}, language = {en} } @misc{NiskanenFondellSahleetal.2019, author = {Niskanen, Johannes and Fondell, Mattis and Sahle, Christoph J. and Eckert, Sebastian and Jay, Raphael Martin and Gilmore, Keith and Pietzsch, Annette and Dantz, Marcus and Lu, Xingye and McNally, Daniel E. and Schmitt, Thorsten and Vaz da Cruz, Vinicius and Kimberg, Victor and F{\"o}hlisch, Alexander}, title = {Reply to Pettersson et al.: Why X-ray spectral features are compatible to continuous distribution models in ambient water}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {116}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {35}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1909551116}, pages = {17158 -- 17159}, year = {2019}, language = {en} } @misc{GeigerFrielerLevermann2017, author = {Geiger, Tobias and Frieler, Katja and Levermann, Anders}, title = {Reply to Comment on: High-income does not protect against hurricane losses (Environmental research letters. - 12 (2017))}, series = {Environmental research letters}, volume = {12}, journal = {Environmental research letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/aa88d6}, pages = {2}, year = {2017}, abstract = {Recently a multitude of empirically derived damage models have been applied to project future tropical cyclone (TC) losses for the United States. In their study (Geiger et al 2016 Environ. Res. Lett. 11 084012) compared two approaches that differ in the scaling of losses with socio-economic drivers: the commonly-used approach resulting in a sub-linear scaling of historical TC losses with a nation's affected gross domestic product (GDP), and the disentangled approach that shows a sub-linear increase with affected population and a super-linear scaling of relative losses with per capita income. Statistics cannot determine which approach is preferable but since process understanding demands that there is a dependence of the loss on both GDP per capita and population, an approach that accounts for both separately is preferable to one which assumes a specific relation between the two dependencies. In the accompanying comment, Rybski et al argued that there is no rigorous evidence to reach the conclusion that high-income does not protect against hurricane losses. Here we affirm that our conclusion is drawn correctly and reply to further remarks raised in the comment, highlighting the adequateness of our approach but also the potential for future extension of our research.}, language = {en} } @misc{CaesarRahmstorfFeulner2021, author = {Caesar, Levke and Rahmstorf, Stefan and Feulner, Georg}, title = {Reply to comment on 'On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming'}, series = {Environmental research letters}, volume = {16}, journal = {Environmental research letters}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/abc776}, pages = {5}, year = {2021}, abstract = {In their comment on our paper (Caesar et al 2020 Environ. Res. Lett. 15 024003), Chen and Tung (hereafter C\&T) argue that our analysis, showing that over the last decades Atlantic meridional overturning circulation (AMOC) strength and global mean surface temperature (GMST) were positively correlated, is incorrect. Their claim is mainly based on two arguments, neither of which is justified: first, C\&T claim that our analysis is based on 'established evidence' that was only true for preindustrial conditions-this is not the case. Using data from the modern period (1947-2012), we show that the established understanding (i.e. deep-water formation in the North Atlantic cools the deep ocean and warms the surface) is correct, but our analysis is not based on this fact. Secondly, C\&T claim that our results are based on a statistical analysis of only one cycle of data which was furthermore incorrectly detrended. This, too, is not true. Our conclusion that a weaker AMOC delays the current surface warming rather than enhances it, is based on several independent lines of evidence. The data we show to support this covers more than one cycle and the detrending (which was performed to avoid spurious correlations due to a common trend) does not affect our conclusion: the correlation between AMOC strength and GMST is positive. We do not claim that this is strong evidence that the two time series are in phase, but rather that this means that the two time series are not anti-correlated.}, language = {en} } @misc{Metzler2016, author = {Metzler, Ralf}, title = {PROTEIN PHYSICS Forever ageing}, series = {Nature physics}, volume = {12}, journal = {Nature physics}, publisher = {Nature Publ. Group}, address = {London}, issn = {1745-2473}, doi = {10.1038/nphys3585}, pages = {113 -- 114}, year = {2016}, abstract = {Single-molecule techniques have long given us insight into the motion and interactions of individual molecules. But simulations now show that the dynamics inside single proteins is not as simple as we thought — and that proteins are forever changing.}, language = {en} } @misc{Oskinova2016, author = {Oskinova, Lida}, title = {Preface: X-ray emission from hot stars and their winds}, series = {Advances in space research}, volume = {58}, journal = {Advances in space research}, publisher = {Elsevier}, address = {Oxford}, issn = {0273-1177}, doi = {10.1016/j.asr.2016.06.031}, pages = {679 -- 679}, year = {2016}, language = {en} } @misc{GudowskaNowakLindenbergMetzler2017, author = {Gudowska-Nowak, Ewa and Lindenberg, Katja and Metzler, Ralf}, title = {Preface: Marian Smoluchowski's 1916 paper—a century of inspiration}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {50}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {38}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/aa8529}, pages = {8}, year = {2017}, language = {en} } @misc{GruendePaterShowalteretal.2006, author = {Gr{\"u}n, Eberhard and de Pater, Imke and Showalter, Mark and Spahn, Frank and Srama, Ralf}, title = {Physics of dusty rings: History and perspective}, series = {Planetary and space science}, volume = {54}, journal = {Planetary and space science}, number = {9-10}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2006.05.005}, pages = {837 -- 843}, year = {2006}, language = {en} } @misc{Qiu2011, author = {Qiu, Xunlin}, title = {Patterned piezo-, pyro-, and ferroelectricity of poled polymer electrets}, series = {Journal of applied physics}, volume = {110}, journal = {Journal of applied physics}, number = {5}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/1.3638069}, pages = {1}, year = {2011}, language = {en} } @misc{EschenlohrBattiatoMaldonadoetal.2014, author = {Eschenlohr, Andrea and Battiato, Mario and Maldonado, P. and Pontius, N. and Kachel, T. and Holldack, K. and Mitzner, Rolf and F{\"o}hlisch, Alexander and Oppeneer, P. M. and Stamm, Christian}, title = {Optical excitation of thin magnetic layers in multilayer structures Reply}, series = {Nature materials}, volume = {13}, journal = {Nature materials}, number = {2}, publisher = {Nature Publ. Group}, address = {London}, issn = {1476-1122}, doi = {10.1038/nmat3851}, pages = {102 -- 103}, year = {2014}, language = {en} } @misc{WuesthoffSohl2016, author = {Wuesthoff, Martin and Sohl, F.}, title = {Obliquity tides have an impact in diurnal tidal stresses on the Moon.}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {51}, journal = {Macromolecules : a publication of the American Chemical Society}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1086-9379}, pages = {A672 -- A672}, year = {2016}, language = {en} } @misc{ErraVelazquezRosenblum2017, author = {Erra, Ramon Guevara and Velazquez, Jose L. Perez and Rosenblum, Michael}, title = {Neural Synchronization from the Perspective of Non-linear Dynamics}, series = {Frontiers in computational neuroscience / Frontiers Research Foundation}, volume = {11}, journal = {Frontiers in computational neuroscience / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5188}, doi = {10.3389/fncom.2017.00098}, pages = {4}, year = {2017}, language = {en} } @misc{KurfuerstFeldmeierKrtička2017, author = {Kurf{\"u}rst, P. and Feldmeier, Achim and Krtička, Jiri}, title = {Modeling sgB[e] Circumstellar Disks}, series = {The B(e) Phenomenon: Forty Years of Studies : proceedings of a conference held at Charles University, Prague, Czech Republic, 27 June-1 July 2016}, volume = {508}, journal = {The B(e) Phenomenon: Forty Years of Studies : proceedings of a conference held at Charles University, Prague, Czech Republic, 27 June-1 July 2016}, publisher = {Astronomical Scoeity of the Pacific}, address = {San Fransisco}, isbn = {978-1-58381-900-5}, pages = {17 -- 22}, year = {2017}, abstract = {During their evolution, massive stars are characterized by a significant loss of mass either via spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around these objects is still under debate. Is it a viscous disk or an ouftlowing disk-forming wind or some other mechanism? It is also unclear how various physical mechanisms that act on the circumstellar environment of the stars affect its shape, density, kinematic, and thermal structure. We assume that the disk-forming mechanism is a viscous transport within an equatorial outflowing disk of a rapidly or even critically rotating star. We study the hydrodynamic and thermal structure of optically thick dense parts of outflowing circumstellar disks that may form around,e.g., Be stars, sgB[e] stars, or Pop m stars. We calculate self-consistent time dependent models of the inner dense region of the disk that is strongly affected either by irradiation from the central star and by contributions of viscous heating effects. We also simulate the dynamic effects of collision between expanding ejecta of supernovae and circumstellar disks that may be form in sgB[e] stars and, e.g., LBVs or Pop in stars.}, language = {en} } @misc{MuellerKupschLaquaietal.2018, author = {M{\"u}ller, Bernd Randolf and Kupsch, Andreas and Laquai, Rene and Nellesen, Jens and Tillmann, Wolfgang and Kasperovich, Galina and Bruno, Giovanni}, title = {Microstructure Characterisation of Advanced Materials via 2D and 3D X-Ray Refraction Techniques}, series = {Materials Science Forum}, volume = {941}, journal = {Materials Science Forum}, publisher = {Trans Tech Publications Ltd}, address = {Zurich}, isbn = {978-3-0357-1208-7}, issn = {0255-5476}, doi = {10.4028/www.scientific.net/MSF.941.2401}, pages = {2401 -- 2406}, year = {2018}, abstract = {3D imaging techniques have an enormous potential to understand the microstructure, its evolution, and its link to mechanical, thermal, and transport properties. In this conference paper we report the use of a powerful, yet not so wide-spread, set of X-ray techniques based on refraction effects. X-ray refraction allows determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with a nanometric detectability. We demonstrate showcases of ceramics and composite materials, where microstructural parameters could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. We present in situ analysis of the damage evolution in an Al/Al2O3 metal matrix composite during tensile load and the identification of void formation (different kinds of defects, particularly unsintered powder hidden in pores, and small inhomogeneity's like cracks) in Ti64 parts produced by selective laser melting using synchrotron X-ray refraction radiography and tomography.}, language = {en} } @misc{SalibaStolterfohtWolffetal.2018, author = {Saliba, Michael and Stolterfoht, Martin and Wolff, Christian Michael and Neher, Dieter and Abate, Antonio}, title = {Measuring aging stability of perovskite solar cells}, series = {Joule}, volume = {2}, journal = {Joule}, number = {6}, publisher = {Cell Press}, address = {Cambridge}, issn = {2542-4351}, doi = {10.1016/j.joule.2018.05.005}, pages = {1019 -- 1024}, year = {2018}, language = {en} } @misc{WaldripNivenAbeletal.2017, author = {Waldrip, Steven H. and Niven, Robert K. and Abel, Markus and Schlegel, Michael}, title = {Maximum entropy analysis of transport networks}, series = {AIP conference proceedings}, volume = {1853}, journal = {AIP conference proceedings}, number = {1}, publisher = {American Institute of Physics}, address = {Melville}, isbn = {978-0-7354-1527-0}, issn = {0094-243X}, doi = {10.1063/1.4985364}, pages = {8}, year = {2017}, abstract = {The maximum entropy method is used to derive an alternative gravity model for a transport network. The proposed method builds on previous methods which assign the discrete value of a maximum entropy distribution to equal the traffic flow rate. The proposed method however, uses a distribution to represent each flow rate. The proposed method is shown to be able to handle uncertainty in a more elegant way and give similar results to traditional methods. It is able to incorporate more of the observed data through the entropy function, prior distribution and integration limits potentially allowing better inferences to be made.}, language = {en} } @misc{SchrapeBalashovSimevskietal.2018, author = {Schrape, Oliver and Balashov, Alexey and Simevski, Aleksandar and Benito, Carlos and Krstić, Miloš}, title = {Master-Clone placement with individual clock tree implementation}, series = {2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC)}, journal = {2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-7656-1}, pages = {4}, year = {2018}, abstract = {A hybrid design approach of the hierarchical physical implementation design flow is presented and demonstrated on a fault-tolerant low-power multiprocessor system. The proposed flow allows to implement selected submodules in parallel with contrary requirements such as identical placement and individual block implementation. The overall system contains four Leon2 cores and communicates via the Waterbear framework and supports Adaptive Voltage Scaling (AVS) functionality. Three of the processor core variants are derived from the first baseline reference core but implemented individually at block level based on their clock tree specification. The chip is prepared for space applications and designed with triple modular redundancy (TMR) for control parts. The low-power performance is enabled by contemporary power and clock management control. An ASIC is fabricated in a low-power 0.13 mu m BiCMOS technology process node.}, language = {en} } @misc{NguyenGerhard2018, author = {Nguyen, Quyet Doan and Gerhard, Reimund}, title = {LDPE/MgO Nanocomposite Dielectrics for Electrical-Insulation and Ferroelectret-Transducer Applications}, series = {2018 IEEE 2nd International Conference on Dielectrics (ICD)}, journal = {2018 IEEE 2nd International Conference on Dielectrics (ICD)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-6389-9}, pages = {4}, year = {2018}, abstract = {Published results on LDPE/MgO nanocomposites (3wt\%) show that they promise to be good electrical-insulation materials. In this work, the nanocomposites are examined as a potential (ferro-)electret material as well. Isothermal surface-potential decay measurements show that charged LDPE/MgO films still exhibit significant surface potentials after heating for 4 hours at 80 degrees C, which suggests good capabilities of LDPE/MgO nanocomposites to hold electric charges of both polarities. Open-tubular-channel ferroelectrets prepared from LDPE/MgO nanocomposite films show significant piezoelectricity with d(33) coefficients of about 20 pC/N after charging and are stable up to temperatures of at least 80 degrees C. Thus LDPE/MgO nanocomposites may become available as a new ferroelectret material. To increase their d(33) coefficients, it is desirable to optimize the charging conditions and the ferroelectret structure.}, language = {en} } @misc{ThoelertHoermannAntreichetal.2017, author = {Thoelert, Steffen and H{\"o}rmann, Ulrich and Antreich, Felix and Meurer, Michael}, title = {Ionospheric effects on high gain antenna GNSS measurements}, series = {Proceedings of the 30th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2017)}, journal = {Proceedings of the 30th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2017)}, publisher = {Instituite of Navigation}, address = {Washington}, issn = {2331-5911}, doi = {10.33012/2017.15343}, pages = {3368 -- 3374}, year = {2017}, abstract = {The ionospheric delay of global navigation satellite systems (GNSS) signals typically is compensated by adding a single correction value to the pseudorange measurement of a GNSS receiver. Yet, this neglects the dispersive nature of the ionosphere. In this context we analyze the ionospheric signal distortion beyond a constant delay. These effects become increasingly significant with the signal bandwidth and hence more important for new broadband navigation signals. Using measurements of the Galileo E5 signal, captured with a high gain antenna, we verify that the expected influence can indeed be observed and compensated. A new method to estimate the total electron content (TEC) from a single frequency high gain antenna measurement of a broadband GNSS signal is proposed and described in detail. The received signal is de facto unaffected by multi-path and interference because of the narrow aperture angle of the used antenna which should reduce the error source of the result in general. We would like to point out that such measurements are independent of code correlation, like in standard receiver applications. It is therefore also usable without knowledge of the signal coding. Results of the TEC estimation process are shown and discussed comparing to common TEC products like TEC maps and dual frequency receiver estimates.}, language = {en} } @misc{LouposDamigosTsertouetal.2019, author = {Loupos, Konstantinos and Damigos, Yannis and Tsertou, Athanasisa and Amditis, Angelos and Lenas, Sotiris-Angelos and Chatziandreoglou, Chistos and Malliou, Christina and Tsaoussidis, Vassilis and Gerhard, Reimund and Rychkov, Dmitry and Wirges, Werner and Frankenstein, Bernd and Camarinopoulos, Stephanos and Kalidromitis, Vassilis and Sanna, C. and Maier, Stephanos and Gordt, A. and Panetsos, P.}, title = {Innovative soft-material sensor, wireless network and assessment software for bridge life-cycle assessment}, series = {Life-cycle analysis and assessmanet in civil engineering : towards an integrated vision}, journal = {Life-cycle analysis and assessmanet in civil engineering : towards an integrated vision}, publisher = {CRC Press, Taylor \& Francis Group}, address = {Boca Raton}, isbn = {978-1-315-22891-4}, pages = {2085 -- 2092}, year = {2019}, abstract = {Nowadays, structural health monitoring of critical infrastructures is considered as of primal importance especially for managing transport infrastructure however most current SHM methodologies are based on point-sensors that show various limitations relating to their spatial positioning capabilities, cost of development and measurement range. This publication describes the progress in the SENSKIN EC co-funded research project that is developing a dielectric-elastomer sensor, formed from a large highly extensible capacitance sensing membrane and is supported by an advanced micro-electronic circuitry, for monitoring transport infrastructure bridges. The sensor under development provides spatial measurements of strain in excess of 10\%, while the sensing system is being designed to be easy to install, require low power in operation concepts, require simple signal processing, and have the ability to self-monitor and report. An appropriate wireless sensor network is also being designed and developed supported by local gateways for the required data collection and exploitation. SENSKIN also develops a Decision-Support-System (DSS) for proactive condition-based structural interventions under normal operating conditions and reactive emergency intervention following an extreme event. The latter is supported by a life-cycle-costing (LCC) and life-cycle-assessment (LCA) module responsible for the total internal and external costs for the identified bridge rehabilitation, analysis of options, yielding figures for the assessment of the economic implications of the bridge rehabilitation work and the environmental impacts of the bridge rehabilitation options and of the associated secondary effects respectively. The overall monitoring system will be evaluated and benchmarked on actual bridges of Egnatia Highway (Greece) and Bosporus Bridge (Turkey).}, language = {en} } @misc{tenFreyhausHuntgeburthWingeretal.2006, author = {ten Freyhaus, Henrik and Huntgeburth, Michael and Winger, Kirstin and B{\"a}umer, Anselm T. and Vantler, Marius and Bekhite, Mohamed M. and Wartenberg, Maria and Sauer, Heinrich and Sparwel, Jan and Rosenkranz, Stephan}, title = {Inhibition of ROS liberation attenuates PDGF-Dependent chemotaxis, but not proliferation in vascular smooth muscle cells - Critical role of Src kinase}, series = {Circulation : an American Heart Association journal}, volume = {114}, journal = {Circulation : an American Heart Association journal}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0009-7322}, pages = {296 -- 297}, year = {2006}, language = {en} } @misc{RamanVenkatesanFruebingGerhard2018, author = {Raman Venkatesan, Thulasinath and Fr{\"u}bing, Peter and Gerhard, Reimund}, title = {Influence of Composition and Preparation on Crystalline Phases and Morphology in Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) Relaxor-Ferroelectric Terpolymer}, series = {2018 IEEE 2nd International Conference on Dielectrics (ICD)}, journal = {2018 IEEE 2nd International Conference on Dielectrics (ICD)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-6389-9}, doi = {10.1109/ICD.2018.8514758}, pages = {4}, year = {2018}, abstract = {The influence of chemical composition and crystallisation conditions on the ferroelectric and paraelectric phases and the resulting morphology in Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer films with 55.4/37.2/7.3 mol\% or with 62.2/29.4/8.4 mol\% of VDF/TrFE/CFE was studied. Poly(vinylidene fluoride trifluoroethylene) (P(VDF-TrFE)) with 75/25 mol\% VDF/TrFE was employed as reference material. Fourier-Transform Infrared Spectroscopy (FTIR) was used to determine the fractions of the relevant terpolymer phases, and X-Ray Diffraction (XRD) was employed to assess the crystalline morphology. The FTIR results show an increase of the fraction of paraelectric phases after annealing. On the other hand, XRD results indicate a more stable paraelectric phase in the terpolymer with higher CFE content.}, language = {en} } @misc{WangRychkovGerhard2018, author = {Wang, Jingwen and Rychkov, Dmitry and Gerhard, Reimund}, title = {Influence of Charge Density on Charge Decay in Chemically Modified Polypropylene Films}, series = {2018 IEEE 2nd International Conference on Dielectrics (ICD)}, journal = {2018 IEEE 2nd International Conference on Dielectrics (ICD)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-6389-9}, doi = {10.1109/ICD.2018.8514718}, pages = {4}, year = {2018}, abstract = {Previous work has shown that surface modification with orthophosphoric acid can significantly enhance the charge stability on polypropylene (PP) surface by generating deeper traps. In the present study, thermally stimulated potential-decay measurements revealed that the chemical treatment may also significantly increase the number of available trapping sites on the surface. Thus, as a consequence, the so-called "cross-over" phenomenon, which is observed on as-received and thermally treated PP electrets, may be overcome in a certain range of initial charge densities. Furthermore, the discharge behavior of chemically modified samples indicates that charges can be injected from the treated surface into the bulk, and/or charges of opposite polarity can be pulled from the rear electrode into the bulk at elevated temperatures and at the high electric fields that are caused by the deposited charges. In the bulk, a lack of deep traps causes rapid charge decay already in the temperature range around 95 degrees C.}, language = {en} } @misc{GerhardKaltenbrunner2019, author = {Gerhard, Reimund and Kaltenbrunner, Martin}, title = {In Memoriam Siegfried Bauer}, series = {IEEE electrical insulation magazine}, volume = {35}, journal = {IEEE electrical insulation magazine}, number = {2}, publisher = {IEEE}, address = {Piscataway}, issn = {0883-7554}, doi = {10.1109/MEI.2019.8636175}, pages = {76 -- 78}, year = {2019}, abstract = {Siegfried Bauer, an internationally renowned, very creative applied physicist, who also was a prolific materials scientist and engineer, died on December 30, 2018, in Linz, Austria, after a one-year battle with cancer. He was full professor of soft-matter physics at the Johannes Kepler University Linz, Austria, and a scientific leader and innovator across the fields but mainly in the areas of electro-active materials (including electrets) and stretchable and imperceptible electronics.}, language = {en} } @misc{deZeaBermudezLerouxRabuetal.2017, author = {de Zea Bermudez, Veronica and Leroux, Fabrice and Rabu, Pierre and Taubert, Andreas}, title = {Hybrid nanomaterials: from the laboratory to the market}, series = {Beilstein journal of nanotechnology}, volume = {8}, journal = {Beilstein journal of nanotechnology}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt, Main}, issn = {2190-4286}, doi = {10.3762/bjnano.8.87}, pages = {861 -- 862}, year = {2017}, language = {en} } @misc{Gerhard2011, author = {Gerhard, Reimund}, title = {Honoring Professor Gerhard M. Sessler on his 80th Birthday (15th of February 2011)}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {18}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {1}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2011.5704485}, pages = {1 -- 2}, year = {2011}, language = {en} } @misc{OskinovaGayleyHamannetal.2012, author = {Oskinova, Lida and Gayley, K. G. and Hamann, Wolf-Rainer and H{\"u}nem{\"o}rder, D. P. and Ignace, R. and Pollock, A. M. T.}, title = {High-Resolution X-Ray Spectroscopy reveals the special nature of Wolf-Rayet star winds (pg 747, 2012)}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {752}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.1088/2041-8205/752/2/L35}, pages = {1}, year = {2012}, language = {en} } @misc{ElNagarLauermannSarhanetal.2019, author = {El-Nagar, Gumaa A. and Lauermann, Iver and Sarhan, Radwan Mohamed and Roth, Christina}, title = {Hierarchically structured iron-doped silver (Ag-Fe) lotus flowers for an efficient oxygen reduction reaction (vol 10, pg 7304 -7310, 2018)}, series = {Nanoscale}, volume = {11}, journal = {Nanoscale}, number = {24}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/c9nr90131k}, pages = {11975 -- 11975}, year = {2019}, language = {en} } @misc{AnguenerAharonianBordasetal.2017, author = {Ang{\"u}ner, Ekrem Oǧuzhan and Aharonian, Felix A. and Bordas, Pol and Casanova, Sabrina and Hoischen, Clemens and Oya, I. and Ziegler, A.}, title = {HESS J1826-130}, series = {AIP conference proceedings / American Institute of Physics}, volume = {1792}, journal = {AIP conference proceedings / American Institute of Physics}, number = {1}, publisher = {American Institute of Physics}, address = {Melville}, organization = {HESS Collaboration}, isbn = {978-0-7354-1456-3}, issn = {0094-243X}, doi = {10.1063/1.4968928}, pages = {6}, year = {2017}, abstract = {HESS J1826-130 is an unidentified hard spectrum source discovered by H.E.S.S. along the Galactic plane, the spectral index being Gamma = 1.6 with an exponential cut-off at about 12 TeV. While the source does not have a clear counterpart at longer wavelengths, the very hard spectrum emission at TeV energies implies that electrons or protons accelerated up to several hundreds of TeV are responsible for the emission. In the hadronic case, the VHE emission can be produced by runaway cosmic-rays colliding with the dense molecular clouds spatially coincident with the H.E.S.S. source.}, language = {en} } @misc{AbramowskiAharonianBenkhalietal.2014, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Boettcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Cheesebrough, A. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Cui, Y. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hahn, J. and Harris, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, M. and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Marx, R. and Maurin, G. and Maxted, N. and Mayer, Michael and McComb, T. J. L. and Mehault, J. and Meintjes, P. J. and Menzler, U. and Meyer, M. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Murach, T. and Naumann, C. L. and de Naurois, M. and Niemiec, J. and Nolan, S. J. and Oakes, L. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Rob, L. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and van Soelen, B. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voelk, H. J. and Volpe, F. and Vorster, M. and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Ward, M. and Weidinger, M. and Weitzel, Q. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Zabalza, V. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S.}, title = {HESS J1640-465 - an exceptionally luminous TeV gamma-ray supernova remnant (vol 439, pg 2828, 2014)}, series = {Monthly notices of the Royal Astronomical Society}, volume = {441}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {HESS Collaboration}, issn = {0035-8711}, doi = {10.1093/mnras/stu826}, pages = {3640 -- 3642}, year = {2014}, language = {en} } @misc{AbramowskiAharonianBenkhalietal.2015, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Backes, Michael and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, Julia Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, Konrad and Birsin, E. and Biteau, Jonathan and B{\"o}ttcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Chadwick, Paula M. and Chakraborty, Nachiketa and Chalme-Calvet, R. and Chaves, Ryan C. G. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, Claire and Cui, Yudong and Davids, Isak Delberth and Degrange, Bernhard and Deil, Christoph and deWilt, P. and Djannati-Ata{\"i}, A. and Domainko, Wilfried and Donath, Axel and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, Tanya and Egberts, Kathrin and Eger, Peter and Espigat, P. and Farnier, C. and Fegan, Stephen and Feinstein, Fabrice and Fernandes, Milton Virgilio and Fernandez, Diane and Fiasson, A. and Fontaine, Gerard and F{\"o}rster, Andreas and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Yves A. and Garrigoux, Tania and Giavitto, G. and Giebels, Berrie and Glicenstein, Jean-Francois and Gottschall, Daniel and Grondin, M. -H. and Grudzinska, M. and Hadasch, Daniela and Haeffner, S. and Hahn, Joachim and Harris, Jonathan and Heinzelmann, G{\"o}tz and Henri, G. and Hermann, German and Hervet, O. and Hillert, Andreas and Hinton, James Anthony and Hofmann, Werner and Hofverberg, Petter and Holler, Markus and Horns, Dieter and Ivascenko, Alex and Jacholkowska, A. and Jahn, C. and Jamrozy, Marek and Janiak, M. and Jankowsky, F. and Jung-Richardt, I. and Kastendieck, Max Anton and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, Michel and Klepser, S. and Klochkov, Dmitry and Kluzniak, W. and Kolitzus, David and Komin, Nu and Kosack, Karl and Krakau, Steffen and Krayzel, F. and Krueger, Pat P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lefranc, Valentin and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lohse, Thomas and Lopatin, A. and Lu, Chia-Chun and Marandon, Vincent and Marcowith, Alexandre and Marx, Ramin and Maurin, G. and Maxted, Nigel and Mayer, Michael and McComb, T. J. Lowry and Mehault, J. and Meintjes, P. J. and Menzler, Ulf and Meyer, M. and Mitchell, Alison M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, Thomas and de Naurois, Mathieu and Niemiec, J. and Nolan, Sam J. and Oakes, Louise and Odaka, Hirokazu and Ohm, S. and Optiz, Bj{\"o}rn and Ostrowski, Michal and Oya, I. and Panter, Michael and Parsons, R. Daniel and Arribas, M. Paz and Pekeur, Nikki W. and Pelletier, G. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, Helen and P{\"u}hlhofer, Gerd and Punch, M. and Quirrenbach, A. and Raab, S. and Reichardt, I. and Reimer, Anita and Reimer, Olaf and Renaud, Metz and de los Reyes, Raquel and Rieger, Frank and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, Vardan and Salek, D. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, Reinhard and Schuessler, F. and Schulz, A. and Schwanke, Ullrich and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spanier, Felix and Spengler, G. and Spies, Franziska and Stawarz, Lukasz and Steenkamp, Riaan and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, Martin and Trichard, C. and Valerius, K. and van Eldik, C. and van Soelen, B. and Vasileiadis, Georges and Veh, J. and Venter, Christo and Viana, Aion and Vincent, P. and Vink, Jacco and V{\"o}lk, Heinrich J. and Volpe, Francesca and Vorster, Martine and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and Ward, Martin and Weidinger, Matthias and Weitzel, Quirin and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, Ruizhi and Zabalza, Victor and Zaborov, Dmitry and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zechlin, Hannes -S.}, title = {H.E.S.S. detection of TeV emission from the interaction region between the supernova remnant G349.7+0.2 and a molecular cloud (vol 574, A100, 2015)}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {580}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201425070e}, pages = {2}, year = {2015}, language = {en} }