@article{HallReschkeCaoetal.2014, author = {Hall, James and Reschke, Stefan and Cao, Hongnan and Leimk{\"u}hler, Silke and Hille, Russ}, title = {The reductive half-reaction of xanthine dehydrogenase from rhodobacter capsulatus the role of GLU(232) in catalysis}, series = {The journal of biological chemistry}, volume = {289}, journal = {The journal of biological chemistry}, number = {46}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {0021-9258}, doi = {10.1074/jbc.M114.603456}, pages = {32121 -- 32130}, year = {2014}, abstract = {Background: Kinetic characterization of wild-type xanthine dehydrogenase and variants. Results: Comparison of the pH dependence of both k(red) and k(red)/K-d, as well as k(cat) and k(cat)/K-m. Conclusion: Ionized Glu(232) of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of xanthine. Significance: Examining the contributions of Glu(232) to catalysis is essential for understanding the mechanism of xanthine dehydrogenase. The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu(232) in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that k(red), the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu(232) being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both k(red) and k(red)/K-d from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu(232) of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pK(a) of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme.}, language = {en} }