@article{KielingRoesslerKrueger2011, author = {Kieling, Katrin and R{\"o}ßler, Dirk and Kr{\"u}ger, Frank}, title = {Receiver function study in northern Sumatra and the Malaysian peninsula}, series = {Journal of seismology}, volume = {15}, journal = {Journal of seismology}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {1383-4649}, doi = {10.1007/s10950-010-9222-7}, pages = {235 -- 259}, year = {2011}, abstract = {In this receiver function study, we investigate the structure of the crust beneath six seismic broadband stations close to the Sunda Arc formed by subduction of the Indo-Australian under the Sunda plate. We apply three different methods to analyse receiver functions at single stations. A recently developed algorithm determines absolute shear-wave velocities from observed frequency-dependent apparent incidence angles of P waves. Using waveform inversion of receiver functions and a modified Zhu and Kanamori algorithm, properties of discontinuities such as depth, velocity contrast, and sharpness are determined. The combination of the methods leads to robust results. The approach is validated by synthetic tests. Stations located on Malaysia show high-shear-wave velocities (V (S)) near the surface in the range of 3.4-3.6 km s (-aEuro parts per thousand 1) attributed to crystalline rocks and 3.6-4.0 km s (-aEuro parts per thousand 1) in the lower crust. Upper and lower crust are clearly separated, the Moho is found at normal depths of 30-34 km where it forms a sharp discontinuity at station KUM or a gradient at stations IPM and KOM. For stations close to the subduction zone (BSI, GSI and PSI) complexity within the crust is high. Near the surface low V (S) of 2.6-2.9 km s (-aEuro parts per thousand 1) indicate sediment layers. High V (S) of 4.2 km s (-aEuro parts per thousand 1) are found at depth greater than 6 and 2 km at BSI and PSI, respectively. There, the Moho is located at 37 and 40 km depth. At station GSI, situated closest to the trench, the subducting slab is imaged as a north-east dipping structure separated from the sediment layer by a 10 km wide gradient in V (S) between 10 and 20 km depth. Within the subducting slab V (S) a parts per thousand aEuro parts per thousand 4.7 km s (-aEuro parts per thousand 1). At station BSI, the subducting slab is found at depth between 90 and 110 km dipping 20A degrees +/- 8A degrees in approximately N 60A degrees E. A velocity increase in similar depth is indicated at station PSI, however no evidence for a dipping layer is found.}, language = {en} } @article{CollingsRietbrockLangeetal.2013, author = {Collings, R. and Rietbrock, Andreas and Lange, Dietrich and Tilmann, F. and Nippress, Stuart and Natawidjaja, D.}, title = {Seismic anisotropy in the sumatra subduction zone}, series = {Journal of geophysical research : Solid earth}, volume = {118}, journal = {Journal of geophysical research : Solid earth}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/jgrb.50157}, pages = {5372 -- 5390}, year = {2013}, abstract = {An important tool for understanding deformation occurring within a subduction zone is the measurement of seismic anisotropy through observations of shear wave splitting (SWS). In Sumatra, two temporary seismic networks were deployed between December 2007 and February 2009, covering the fore arc between the fore-arc islands to the back arc. We use SKS and local SWS measurements to determine the type, amount, and location of anisotropy. Local SWS measurements from the fore-arc islands exhibit trench-parallel fast directions which can be attributed to shape preferred orientation of cracks/fractures in the overriding sediments. In the Sumatran Fault region, the predominant fast direction is fault/trench parallel, while in the back-arc region it is trench perpendicular. The trench-perpendicular measurements exhibit a positive correlation between delay time and raypath length in the mantle wedge, while the fault-parallel measurements are similar to the fault-parallel fast directions observed for two crustal events at the Sumatran Fault. This suggests that there are two layers of anisotropy: one due to entrained flow within the mantle wedge and a second layer within the overriding crust due to the shear strain caused by the Sumatran Fault. SKS splitting results show a NNW-SSE fast direction with delay times of 0.8-3.0s. The fast directions are approximately parallel to the absolute plate motion of the subducting Indo-Australian Plate. The small delay times exhibited by the local SWS (0.05-0.45s), in combination with the large SKS delay times, suggest that the anisotropy generating the teleseismic SWS is dominated by entrained flow in the asthenosphere below the slab.}, language = {en} }