@article{KoberZeilingerHippeetal.2015, author = {Kober, Florian and Zeilinger, Gerold and Hippe, Kristina and Marc, Odin and Lendzioch, Theodora and Grischott, Reto and Christl, Marcus and Kubik, Peter W. and Zola, Ramiro}, title = {Tectonic and lithological controls on denudation rates in the central Bolivian Andes}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {657}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2015.06.037}, pages = {230 -- 244}, year = {2015}, abstract = {The topographic signature of a mountain belt depends on the interplay of tectonic, climatic and erosional processes, whose relative importance changes over times, while quantifying these processes and their rates at specific times remains a challenge. The eastern Andes of central Bolivia offer a natural laboratory in which such interplay has been debated. Here, we investigate the Rio Grande catchment which crosses orthogonally the eastern Andes orogen from the Eastern Cordillera into the Subandean Zone, exhibiting a catchment relief of up to 5000 m. Despite an enhanced tectonic activity in the Subandes, local relief, mean and modal slopes and channel steepness indices are largely similar compared to the Eastern Cordillera and the intervening Interandean Zone. Nevertheless, a dataset of 57 new cosmogenic 10Be and 26AI catchment wide denudation rates from the Rio Grande catchment reveals up to one order of magnitude higher denudation rates in the Subandean Zone (mean 0.8 mm/yr) compared to the upstream physiographic regions. We infer that tectonic activity in the thrusting dominated Subandean belt causes higher denudation rates based on cumulative rock uplift investigations and due to the absence of a pronounced climate gradient. Furthermore, the lower rock strength of the Subandean sedimentary units correlates with mean slopes similar to the ones of the Eastern Cordillera and Interandean Zone, highlighting the fact, that lithology and rock strength can control high denudation rates at low slopes. Low denudation rates measured at the outlet of the Rio Grande catchment (Abapo) are interpreted to be a result of a biased cosmogenic nuclide mixing that is dominated by headwater signals from the Eastern Cordillera and the Interandean zone and limited catchment sediment connectivity in the lower river reaches. Therefore, comparisons of short- (i.e., sediment yield) and millennial denudation rates require caution when postulating tectonic and/or climatic forcing without detailed studies. (C) 2015 The Authors. Published by Elsevier B.V.}, language = {en} } @article{MargirierBraunGautheronetal.2019, author = {Margirier, Audrey and Braun, Jean and Gautheron, Cecile and Carcaillet, Julien and Schwartz, Stephane and Jamme, Rosella Pinna and Stanley, Jessica}, title = {Climate control on Early Cenozoic denudation of the Namibian margin as deduced from new thermochronological constraints}, series = {Earth \& planetary science letters}, volume = {527}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2019.115779}, pages = {11}, year = {2019}, abstract = {The processes that control long term landscape evolution in continental interiors and, in particular, along passive margins such as in southern Africa, are still the subject of much debate (e.g. Braun, 2018). Although today the Namibian margin is characterized by an arid climate, it has experienced climatic fluctuations during the Cenozoic and, yet, to date no study has documented the potential role of climate on its erosion history. In western Namibia, the Brandberg Massif, an erosional remnant or inselberg, provides a good opportunity to document the Cenozoic denudation history of the margin using the relationship between rock cooling or exhumation ages and their elevation. Here we provide new apatite (UThSm)/He dates on the Brandberg Inselberg that range from 151 +/- 12 to 30 +/- 2 Ma. Combined with existing apatite fission track data, they yield new constraints on the denudation history of the margin. These data document two main cooling phases since continental break-up 130 Myr ago, a rapid one (similar to 10 degrees C/Myr) following break-up and a slower one (similar to 12 degrees C/Myr) between 65 and 35 Ma. We interpret them respectively to be related to escarpment erosion following rifting and continental break-up and as a phase of enhanced denudation during the Early Eocene Climatic Optimum. We propose that during the Early Eocene Climatic Optimum chemical weathering was important and contributed significantly to the denudation of the Namibian margin and the formation of a pediplain around the Brandberg and enhanced valley incision within the massif. Additionally, aridification of the region since 35 Ma has resulted in negligible denudation rates since that time. (C) 2019 Elsevier B.V. All rights reserved.}, language = {en} }