@article{MaiRakhmatullinaBleeketal.2014, author = {Mai, Tobias and Rakhmatullina, Ekaterina and Bleek, Katrin and Boye, Susanne and Yuan, Jiayin and Voelkel, Antje and Graewert, Marlies and Cheaib, Zeinab and Eick, Sigrun and G{\"u}nter, Christina and Lederer, Albena and Lussi, Adrian and Taubert, Andreas}, title = {Poly(ethylene oxide)-b-poly(3-sulfopropyl methacrylate) block copolymers for calcium phosphate mineralization and biofilm inhibition}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {15}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/bm500888q}, pages = {3901 -- 3914}, year = {2014}, abstract = {Poly(ethylene oxide) (PEO) has long been used as an additive in toothpaste, partly because it reduces biofilm formation on teeth. It does not, however, reduce the formation of dental calculus or support the remineralization of dental enamel or dentine. The present article describes the synthesis of new block copolymers on the basis of PEO and poly(3-sulfopropyl methacrylate) blocks using atom transfer radical polymerization. The polymers have very large molecular weights (over 10(6) g/mol) and are highly water-soluble. They delay the precipitation of calcium phosphate from aqueous solution but, upon precipitation, lead to relatively monodisperse hydroxyapatite (HAP) spheres. Moreover, the polymers inhibit the bacterial colonization of human enamel by Streptococcus gordonii, a pioneer bacterium in oral biofilm formation, in vitro. The formation of well-defined HAP spheres suggests that a polymer-induced liquid precursor phase could be involved in the precipitation process. Moreover, the inhibition of bacterial adhesion suggests that the polymers could be utilized in caries prevention.}, language = {en} } @misc{BleekTaubert2013, author = {Bleek, Katrin and Taubert, Andreas}, title = {New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution}, series = {Acta biomaterialia}, volume = {9}, journal = {Acta biomaterialia}, number = {5}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2012.12.027}, pages = {6283 -- 6321}, year = {2013}, abstract = {The polymer-controlled and bioinspired precipitation of inorganic minerals from aqueous solution at near-ambient or physiological conditions avoiding high temperatures or organic solvents is a key research area in materials science. Polymer-controlled mineralization has been studied as a model for biomineralization and for the synthesis of (bioinspired and biocompatible) hybrid materials for a virtually unlimited number of applications. Calcium phosphate mineralization is of particular interest for bone and dental repair. Numerous studies have therefore addressed the mineralization of calcium phosphate using a wide variety of low- and high-molecular-weight additives. In spite of the growing interest and increasing number of experimental and theoretical data, the mechanisms of polymer-controlled calcium phosphate mineralization are not entirely clear to date, although the field has made significant progress in the last years. A set of elegant experiments and calculations has shed light on some details of mineral formation, but it is currently not possible to preprogram a mineralization reaction to yield a desired product for a specific application. The current article therefore summarizes and discusses the influence of (macro)molecular entities such as polymers, peptides, proteins and gels on biomimetic calcium phosphate mineralization from aqueous solution. It focuses on strategies to tune the kinetics, morphologies, final dimensions and crystal phases of calcium phosphate, as well as on mechanistic considerations.}, language = {en} } @misc{BleekTaubert2013, author = {Bleek, Katrin and Taubert, Andreas}, title = {New developments in polymer-controlled, bio-inspired calcium phosphate mineralization from aqueous solution}, series = {Acta biomaterialia}, volume = {9}, journal = {Acta biomaterialia}, number = {9}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2013.05.007}, pages = {8466 -- 8466}, year = {2013}, language = {en} } @article{ZiolkowskiBleekTwamleyetal.2012, author = {Ziolkowski, Bartosz and Bleek, Katrin and Twamley, Brendan and Fraser, Kevin J. and Byrne, Robert and Diamond, Dermot and Taubert, Andreas}, title = {Magnetic ionogels (MagIGs) based on iron oxide nanoparticles, poly(N-isopropylacrylamide), and the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {32}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201200597}, pages = {5245 -- 5251}, year = {2012}, abstract = {Magnetic ionogels (MagIGs) were prepared from organosilane-coated iron oxide nanoparticles, N-isopropylacrylamide, and the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide. The ionogels prepared with the silane-modified nanoparticles are more homogeneous than ionogels prepared with unmodified magnetite particles. The silane-modified particles are immobilized in the ionogel and are resistant tonanoparticle leaching. The modified particles also render the ionogels mechanically more stable than the ionogels synthesized with unmodified nanoparticles. The ionogels respond to external permanent magnets and are therefore prototypes of a new soft magnetic actuator.}, language = {en} }