@article{LischeidKalettkaHollaenderetal.2018, author = {Lischeid, Gunnar and Kalettka, Thomas and Holl{\"a}nder, Matthias and Steidl, J{\"o}rg and Merz, Christoph and Dannowski, Ralf and Hohenbrink, Tobias Ludwig and Lehr, Christian and Onandia, Gabriela and Reverey, Florian and P{\"a}tzig, Marlene}, title = {Natural ponds in an agricultural landscape}, series = {Limnologica : ecology and management of inland waters}, volume = {68}, journal = {Limnologica : ecology and management of inland waters}, publisher = {Elsevier GMBH}, address = {M{\"u}nchen}, issn = {0075-9511}, doi = {10.1016/j.limno.2017.01.003}, pages = {5 -- 16}, year = {2018}, abstract = {The pleistocenic landscape in North Europe, North Asia and North America is spotted with thousands of natural ponds called kettle holes. They are biological and biogeochemical hotspots. Due to small size, small perimeter and shallow depth biological and biogeochemical processes in kettle holes are closely linked to the dynamics and the emissions of the terrestrial environment. On the other hand, their intriguing high spatial and temporal variability makes a sound understanding of the terrestrial-aquatic link very difficult. It is presumed that intensive agricultural land use during the last decades has resulted in a ubiquitous high nutrient load. However, the water quality encountered at single sites highly depends on internal biogeochemical processes and thus can differ substantially even between adjacent sites. This study aimed at elucidating the interplay between external drivers and internal processes based on a thorough analysis of a comprehensive kettle hole water quality data set. To study the role of external drivers, effects of land use in the adjacent terrestrial environment, effects of vegetation at the interface between terrestrial and aquatic systems, and that of kettle hole morphology on water quality was investigated. None of these drivers was prone to strong with-in year variability. Thus temporal variability of spatial patterns could point to the role of internal biogeochemical processes. To that end, the temporal stability of the respective spatial patterns was studied as well for various solutes. All of these analyses were performed for a set of different variables. Different results for different solutes were then used as a source of information about the respective driving processes. In the Quillow catchment in the Uckermark region, about 100 km north of Berlin, Germany, 62 kettle holes have been regularly sampled since 2013. Kettle hole catchments were determined based on a groundwater level map of the uppermost aquifer. The catchments were not clearly related to topography. Spatial patterns of kettle hole water concentration of (earth) alkaline metals and chloride were fairly stable, presumably reflecting solute concentration of the uppermost aquifer. In contrast, spatial patterns of nutrients and redox-sensitive solutes within the kettle holes were hardly correlated between different sampling campaigns. Correspondingly, effects of season, hydrogeomorphic kettle hole type, shore vegetation or land use in the respective catchments were significant but explained only a minor portion of the total variance. It is concluded that internal processes mask effects of the terrestrial environment. There is some evidence that denitrification and phosphorus release from the sediment during frequent periods of hypoxia might play a major role. The latter seems to boost primary production occasionally. These processes do not follow a clear seasonal pattern and are still not well understood.}, language = {en} } @article{LischeidKalettka2012, author = {Lischeid, Gunnar and Kalettka, Thomas}, title = {Grasping the heterogeneity of kettle hole water quality in Northeast Germany}, series = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, volume = {689}, journal = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0018-8158}, doi = {10.1007/s10750-011-0764-7}, pages = {63 -- 77}, year = {2012}, abstract = {In the young moraine landscape in Northeast Germany, small glacially created ponds, the so-called kettle holes, are very abundant. They exhibit large spatial heterogeneity, seemingly rendering each kettle hole unique. However, this would not be consistent with any scientific approach. Thus, a classification scheme has been developed for kettle holes in Northeast Germany based on morphology, hydrodynamics and connection to stream networks of the kettle holes as well as size, topography and land use of the respective catchment. These indices are assumed to be related both to water quality as well as to biological issues of the kettle holes. Starting in the mid-1990s, an extensive monitoring program has been established in the federal state of Brandenburg, Germany. In this study, a subset comprising 1,316 samples from 79 kettle holes was analysed, where 21 parameters had been determined. Sampling intervals varied widely, and were between bi-weekly and three-monthly at most sites. A nonlinear principal component analysis was performed. The first four components explained 90\% of the variance. These components seem to provide quantitative measures of phosphorus release from the sediments during hypoxic periods, agricultural solute input, algae primary production, and geogenic compounds. This allowed differentiating between the natural and anthropogenic impact factors on water quality. In addition, scores of single components were related to properties of the kettle holes and their environments. The results contribute to a better understanding of biological and biogeochemical processes and can be used to verify the effects of conservation and management strategies for kettle holes.}, language = {en} }