@article{KimShprits2019, author = {Kim, Kyung-Chan and Shprits, Yuri Y.}, title = {Statistical Analysis of Hiss Waves in Plasmaspheric Plumes Using Van Allen Probe Observations}, series = {Journal of geophysical research : Space physics}, volume = {124}, journal = {Journal of geophysical research : Space physics}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2018JA026458}, pages = {1904 -- 1915}, year = {2019}, abstract = {Plasmaspheric hiss waves commonly observed in high-density regions in the Earth's magnetosphere are known to be one of the main contributors to the loss of radiation belt electrons. There has been a lot of effort to investigate the distributions of hiss waves in the plasmasphere, while relatively little attention has been given to those in the plasmaspheric plume. In this study, we present for the first time a statistical analysis of the occurrence and the spatial distribution of wave amplitudes and wave normal angles for hiss waves in plumes using Van Allen Probes observations during the period of October 2012 to December 2016. Statistical results show that a wide range of hiss wave amplitudes in plumes from a few picotesla to >100 pT is observed, but a modest (<20 pT) wave amplitude is more commonly observed regardless of geomagnetic activity in both the midnight-to-dawn and dusk sector. By contrast, stronger amplitude hiss occurs preferentially during geomagnetically active times in the dusk sector. The wave normal angles are distributed over a broad range from 0° to 90° with a bimodal distribution: a quasi-field-aligned population (<20°) with an occurrence rate of <60\% and an oblique one (>50°) with a relative low occurrence rate of ≲20\%. Therefore, from a statistical point of view, we confirm that the hiss intensity (a few tens of picotesla) and field-aligned hiss wave adopted in previous simulation studies are a reasonable assumption but stress that the activity dependence of the wave amplitude should be considered.}, language = {en} } @article{KimShpritsBlake2016, author = {Kim, Kyung-Chan and Shprits, Yuri Y. and Blake, J. Bernard}, title = {Fast injection of the relativistic electrons into the inner zone and the formation of the split-zone structure during the Bastille Day storm in July 2000}, series = {Journal of geophysical research : Space physics}, volume = {121}, journal = {Journal of geophysical research : Space physics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1002/2015JA022072}, pages = {8329 -- 8342}, year = {2016}, abstract = {During the July 2000 geomagnetic storm, known as the Bastille Day storm, Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX)/Heavy Ion Large Telescope (HILT) observed a strong injection of similar to 1MeV electrons into the slot region (L similar to 2.5) during the storm main phase. Then, during the following month, electrons were clearly seen diffusing inward down to L=2 and forming a pronounced split structure encompassing a narrow, newly formed slot region around L=3. SAMPEX observations are first compared with electron and proton observations on HEO-3 and NOAA-15 to validate that the observed unusual dynamics was not caused by proton contamination of the SAMPEX instrument. The time-dependent 3-D Versatile Electron Radiation Belt (VERB) simulation of 1MeV electron flux evolution is compared with the SAMPEX/HILT observations. The results show that the VERB code predicts overall time evolution of the observed split structure. The simulated split structure is produced by pitch angle scattering into the Earth atmosphere of similar to 1MeV electrons by plasmaspheric hiss.}, language = {en} }