@article{LehrPoeschkeLewandowskietal.2015, author = {Lehr, C. and P{\"o}schke, Franziska and Lewandowski, J{\"o}rg and Lischeid, Gunnar}, title = {A novel method to evaluate the effect of a stream restoration on the spatial pattern of hydraulic connection of stream and groundwater}, series = {Journal of hydrology}, volume = {527}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2015.04.075}, pages = {394 -- 401}, year = {2015}, abstract = {Stream restoration aims at an enhancement of ecological habitats, an increase of water retention within a landscape and sometimes even at an improvement of biogeochemical functions of lotic ecosystems. For the latter, good exchange between groundwater and stream water is often considered to be of major importance. In this study hydraulic connectivity between river and aquifer was investigated for a four years period, covering the restoration of an old oxbow after the second year. The oxbow became reconnected to the stream and the clogging layer in the oxbow was excavated. We expected increasing hydraulic connectivity between oxbow and aquifer after restoration of the stream, and decreasing hydraulic connectivity for the former shortcut due to increased clogging. To test that hypothesis, the spatial and temporal characteristics of the coupled groundwater-stream water system before and after the restoration were analysed by principal component analyses of time series of groundwater heads and stream water levels. The first component depicted between 53\% and 70\% of the total variance in the dataset for the different years. It captured the propagation of the pressure signal induced by stream water level fluctuations throughout the adjacent aquifer. Thus it could be used as a measure of hydraulic connectivity between stream and aquifer. During the first year, the impact of stream water level fluctuations decreased with distance from the regulated river (shortcut), whereas the hydraulic connection of the oxbow to the adjacent aquifer was very low. After restoration of the stream we observed a slight but not significant increase of hydraulic connectivity in the oxbow in the second year after restoration, but no change for the former shortcut. There is some evidence that the pattern of hydraulic connectivity at the study site is by far more determined by the natural heterogeneity of hydraulic conductivities of the floodplain sediments and the initial construction of the shortcut rather than by the clogging layer in the oxbow. (C) 2015 The Authors. Published by Elsevier B.V.}, language = {en} } @article{HohenbrinkLischeid2015, author = {Hohenbrink, Tobias Ludwig and Lischeid, Gunnar}, title = {Does textural heterogeneity matter? Quantifying transformation of hydrological signals in soils}, series = {Journal of hydrology}, volume = {523}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2015.02.009}, pages = {725 -- 738}, year = {2015}, abstract = {Textural heterogeneity causes complex water flow patterns and soil moisture dynamics in soils that hamper monitoring and modeling soil hydrological processes. These patterns can be generated by process based models considering soil texture heterogeneities. However, there is urgent need for tools for the inverse approach, that is, to analyze observed dynamics in a quantitative way independent from any model approach in order to identify effects of soil texture heterogeneity. Here, studying the transformation of hydrological input signals (e.g., rainfall, snow melt) propagating through the vadose zone is a promising supplement to the common perspective of mass flux considerations. In this study we applied a recently developed new approach for quantitative analysis of hydrological time series (i) to investigate the effect of soil texture on the signal transformation behavior and (ii) to analyze to what degree soil moisture dynamics from a heterogeneous profile can be reproduced by a corresponding homogenous substrate. We used simulation models to generate three data sets of soil moisture time series considering homogeneous substrates (HOM), homogeneous substrates with noise added (NOISE), and heterogeneous substrates (HET). The soil texture classes sand, loamy sand, clay loam and silt were considered. We applied a principal component analysis (also called empirical orthogonal functions) to identify predominant functional patterns and to measure the degree of signal transformation of single time series. For the HOM case 86.7\% of the soil moisture dynamics were reproduced by the first two principal components. Based on these results a quantitative measure for the degree of transformation of the input signal was derived. The general nature of signal transformation was nearly identical in all textures, but the intensity of signal damping per depth interval decreased from fine to coarse textures. The same functional patterns occurred in the HET data set. However, here the signal damping of time series did not increase monotonically with soil depth. The analysis succeeded in extracting the same signal transformation behavior from the NOISE data set compared to that of the HOM case in spite of being blurred by random noise. Thus, principal component analysis proved to be a very robust tool to disentangle between independent effects and to measure the degree of transformation of the input signal. The suggested approach can be used for (i) data processing, including subtracting measurement noise (ii) identification of factors controlling soil water dynamics, (iii) assessing the mean signal transformation in heterogeneous soils based on observed soil moisture time series, and (iv) model building, calibration and evaluation. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} }