@phdthesis{Dahlke2020, author = {Dahlke, Sandro}, title = {Rapid climate changes in the arctic region of Svalbard}, doi = {10.25932/publishup-44554}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445542}, school = {Universit{\"a}t Potsdam}, pages = {xv, 123}, year = {2020}, abstract = {Over the last decades, the Arctic regions of the earth have warmed at a rate 2-3 times faster than the global average- a phenomenon called Arctic Amplification. A complex, non-linear interplay of physical processes and unique pecularities in the Arctic climate system is responsible for this, but the relative role of individual processes remains to be debated. This thesis focuses on the climate change and related processes on Svalbard, an archipelago in the North Atlantic sector of the Arctic, which is shown to be a "hotspot" for the amplified recent warming during winter. In this highly dynamical region, both oceanic and atmospheric large-scale transports of heat and moisture interfere with spatially inhomogenous surface conditions, and the corresponding energy exchange strongly shapes the atmospheric boundary layer. In the first part, Pan-Svalbard gradients in the surface air temperature (SAT) and sea ice extent (SIE) in the fjords are quantified and characterized. This analysis is based on observational data from meteorological stations, operational sea ice charts, and hydrographic observations from the adjacent ocean, which cover the 1980-2016 period. It is revealed that typical estimates of SIE during late winter range from 40-50\% (80-90\%) in the western (eastern) parts of Svalbard. However, strong SAT warming during winter of the order of 2-3K per decade dictates excessive ice loss, leaving fjords in the western parts essentially ice-free in recent winters. It is further demostrated that warm water currents on the west coast of Svalbard, as well as meridional winds contribute to regional differences in the SIE evolution. In particular, the proximity to warm water masses of the West Spitsbergen Current can explain 20-37\% of SIE variability in fjords on west Svalbard, while meridional winds and associated ice drift may regionally explain 20-50\% of SIE variability in the north and northeast. Strong SAT warming has overruled these impacts in recent years, though. In the next part of the analysis, the contribution of large-scale atmospheric circulation changes to the Svalbard temperature development over the last 20 years is investigated. A study employing kinematic air-back trajectories for Ny-{\AA}lesund reveals a shift in the source regions of lower-troposheric air over time for both the winter and the summer season. In winter, air in the recent decade is more often of lower-latitude Atlantic origin, and less frequent of Arctic origin. This affects heat- and moisture advection towards Svalbard, potentially manipulating clouds and longwave downward radiation in that region. A closer investigation indicates that this shift during winter is associated with a strengthened Ural blocking high and Icelandic low, and contributes about 25\% to the observed winter warming on Svalbard over the last 20 years. Conversely, circulation changes during summer include a strengthened Greenland blocking high which leads to more frequent cold air advection from the central Arctic towards Svalbard, and less frequent air mass origins in the lower latitudes of the North Atlantic. Hence, circulation changes during winter are shown to have an amplifying effect on the recent warming on Svalbard, while summer circulation changes tend to mask warming. An observational case study using upper air soundings from the AWIPEV research station in Ny-{\AA}lesund during May-June 2017 underlines that such circulation changes during summer are associated with tropospheric anomalies in temperature, humidity and boundary layer height. In the last part of the analysis, the regional representativeness of the above described changes around Svalbard for the broader Arctic is investigated. Therefore, the terms in the diagnostic temperature equation in the Arctic-wide lower troposphere are examined for the Era-Interim atmospheric reanalysis product. Significant positive trends in diabatic heating rates, consistent with latent heat transfer to the atmosphere over regions of increasing ice melt, are found for all seasons over the Barents/Kara Seas, and in individual months in the vicinity of Svalbard. The above introduced warm (cold) advection trends during winter (summer) on Svalbard are successfully reproduced. Regarding winter, they are regionally confined to the Barents Sea and Fram Strait, between 70°-80°N, resembling a unique feature in the whole Arctic. Summer cold advection trends are confined to the area between eastern Greenland and Franz Josef Land, enclosing Svalbard.}, language = {en} } @phdthesis{Folkertsma2020, author = {Folkertsma, Remco}, title = {Evolutionary adaptation to climate in microtine mammals}, doi = {10.25932/publishup-47680}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476807}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2020}, abstract = {Understanding how organisms adapt to their local environment is a major focus of evolutionary biology. Local adaptation occurs when the forces of divergent natural selection are strong enough compared to the action of other evolutionary forces. An improved understanding of the genetic basis of local adaptation can inform about the evolutionary processes in populations and is of major importance because of its relevance to altered selection pressures due to climate change. So far, most insights have been gained by studying model organisms, but our understanding about the genetic basis of local adaptation in wild populations of species with little genomic resources is still limited. With the work presented in this thesis I therefore set out to provide insights into the genetic basis of local adaptation in populations of two voles species: the common vole (Microtus arvalis) and the bank vole (Myodes glareolus). Both voles species are small mammals, they have a high evolutionary potential compared to their dispersal capabilities and are thus likely to show genetic responses to local conditions, moreover, they have a wide distribution in which they experience a broad range of different environmental conditions, this makes them an ideal species to study local adaptation. The first study focused on producing a novel mitochondrial genome to facilitate further research in M. arvalis. To this end, I generated the first mitochondrial genome of M. arvalis using shotgun sequencing and an iterative mapping approach. This was subsequently used in a phylogenetic analysis that produced novel insights into the phylogenetic relationships of the Arvicolinae. The following two studies then focused on the genetic basis of local adaptation using ddRAD-sequencing data and genome scan methods. The first of these involved sequencing the genomic DNA of individuals from three low-altitude and three high-altitude M. arvalis study sites in the Swiss Alps. High-altitude environments with their low temperatures and low levels of oxygen (hypoxia) pose considerable challenges for small mammals. With their small body size and proportional large body surface they have to sustain high rates of aerobic metabolism to support thermogenesis and locomotion, which can be restricted with only limited levels of oxygen available. To generate insights into high-altitude adaptation I identified a large number of single nucleotide polymorphisms (SNPs). These data were first used to identify high levels of differentiation between study sites and a clear pattern of population structure, in line with a signal of isolation by distance. Using genome scan methods, I then identified signals of selection associated with differences in altitude in genes with functions related to oxygen transport into tissue and genes related to aerobic metabolic pathways. This indicates that hypoxia is an important selection pressure driving local adaptation at high altitude in M. arvalis. A number of these genes were linked with high-altitude adaptation in other species before, which lead to the suggestion that high-altitude populations of several species have evolved in a similar manner as a response to the unique conditions at high altitude The next study also involved the genetic basis of local adaptation, here I provided insights into climate-related adaptation in M. glareolus across its European distribution. Climate is an important environmental factor affecting the physiology of all organisms. In this study I identified a large number of SNPs in individuals from twelve M. glareolus populations distributed across Europe. I used these, to first establish that populations are highly differentiated and found a strong pattern of population structure with signal of isolation by distance. I then employed genome scan methods to identify candidate loci showing signals of selection associated with climate, with a particular emphasis on polygenic loci. A multivariate analysis was used to determine that temperature was the most important climate variable responsible for adaptive genetic variation among all variables tested. By using novel methods and genome annotation of related species I identified the function of genes of candidate loci. This showed that genes under selection have functions related to energy homeostasis and immune processes. Suggesting that M. glareolus populations have evolved in response to local temperature and specific local pathogenic selection pressures. The studies presented in this thesis provide evidence for the genetic basis of local adaptation in two vole species across different environmental gradients, suggesting that the identified genes are involved in local adaptation. This demonstrates that with the help of novel methods the study of wild populations, which often have little genomic resources available, can provide unique insights into evolutionary processes.}, language = {en} }