@article{MoesenlechnerPaunzenPelisolietal.2021, author = {M{\"o}senlechner, Gerald and Paunzen, Ernst and Pelisoli, Ingrid D. and Seelig, Joseph and Stidl, Sarah and Maitzen, Hans Michael}, title = {A Kepler K2 view of subdwarf A-type stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {657}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202037789}, pages = {11}, year = {2021}, abstract = {Context. The spectroscopic class of subdwarf A-type (sdA) stars has come into focus in recent years because of their possible link to extremely low-mass white dwarfs, a rare class of objects resulting from binary evolution. Although most sdA stars are consistent with metal-poor halo main-sequence stars, the formation and evolution of a fraction of these stars are still matters of debate. Aims. The identification of photometric variability can help to put further constraints on the evolutionary status of sdA stars, in particular through the analysis of pulsations. Moreover, the binary ratio, which can be deduced from eclipsing binaries and ellipsoidal variables, is important as input for stellar models. In order to search for variability due to either binarity or pulsations in objects of the spectroscopic sdA class, we have extracted all available high precision light curves from the Kepler K2 mission. Methods. We have performed a thorough time series analysis on all available light curves, employing three different methods. Frequencies with a signal-to-noise ratio higher than four have been used for further analysis. Results. From the 25 targets, 13 turned out to be variables of different kinds (i.e., classical pulsating stars, ellipsoidal and cataclysmic variables, eclipsing binaries, and rotationally induced variables). For the remaining 12 objects, a variability threshold was determined.}, language = {en} } @article{DorschJefferyIrrgangetal.2021, author = {Dorsch, Matti and Jeffery, C. Simon and Irrgang, Andreas and Woolf, Vincent and Heber, Ulrich}, title = {EC 22536-5304}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {653}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/202141381}, pages = {22}, year = {2021}, abstract = {Helium-burning hot subdwarf stars of spectral types O and B (sdO/B) are thought to be produced through various types of binary interactions. The helium-rich hot subdwarf star EC 22536-5304 was recently found to be extremely enriched in lead. Here, we show that EC 22536-5304 is a binary star with a metal-poor subdwarf F-type (sdF) companion. We performed a detailed analysis of high-resolution SALT/HRS and VLT/UVES spectra, deriving metal abundances for the hot subdwarf, as well as atmospheric parameters for both components. Because we consider the contribution of the sdF star, the derived lead abundance for the sdOB, + 6.3 +/- 0.3 dex relative to solar, is even higher than previously thought. We derive T-eff = 6210 +/- 70 K, log g = 4.64 +/- 0.10, [FE/H] = - 1.95 +/- 0.04, and [alpha/Fe] = + 0.40 +/- 0.04 for the sdF component. Radial velocity variations, although poorly sampled at present, indicate that the binary system has a long orbital period of about 457 days. This suggests that the system was likely formed through stable Roche lobe overflow (RLOF). A kinematic analysis shows that EC 22536-5304 is on an eccentric orbit around the Galactic centre. This, as well as the low metallicity and strong alpha enhancement of the sdF-type companion, indicate that EC 22536-5304 is part of the Galactic halo or metal-weak thick disc. As the first long-period hot subdwarf binary at [FE/H] less than or similar to- 1, EC 22536-5304 may help to constrain the RLOF mechanism for mass transfer from low-mass, low-metallicity red giant branch (RGB) stars to main-sequence companions.}, language = {en} } @article{NeunteufelKruckowUGeieretal.2021, author = {Neunteufel, Patrick and Kruckow U., Matthias and Geier, Stephan and Hamers, Adrian S.}, title = {Predicted spatial and velocity distributions of ejected companion stars of helium accretion-induced thermonuclear supernovae}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {646}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202040022}, pages = {9}, year = {2021}, abstract = {Context Thermonuclear supernovae (SNe), a subset of which are the highly important SNe Type Ia, remain one of the more poorly understood phenomena known to modern astrophysics. In recent years, the single degenerate helium (He) donor channel, where a white dwarf star accretes He-rich matter from a hydrogen-depleted companion, has emerged as a promising candidate progenitor scenario for these events. An unresolved question in this scenario is the fate of the companion star, which would be evident as a runaway hot subdwarf O/B stars (He sdO/B) in the aftermath of the SN event. Aims Previous studies have shown that the kinematic properties of an ejected companion provide an opportunity to closer examine the properties of an SN progenitor system. However, with the number of observed objects not matching predictions by theory, the viability of this mechanism is called into question. In this study, we first synthesize a population of companion stars ejected by the aforementioned mechanism, taking into account predicted ejection velocities, the inferred population density in the Galactic mass distribution, and subsequent kinematics in the Galactic potential. We then discuss the astrometric properties of this population. Methods We present 10(6) individual ejection trajectories, which were numerically computed with a newly developed, lightweight simulation framework. Initial conditions were randomly generated, but weighted according to the Galactic mass density and ejection velocity data. We then discuss the bulk properties (Galactic distribution and observational parameters) of our sample. Results Our synthetic population reflects the Galactic mass distribution. A peak in the density distribution for close objects is expected in the direction of the Galactic centre. Higher mass runaways should outnumber lower mass ones. If the entire considered mass range is realised, the radial velocity distribution should show a peak at 500 km s(-1). If only close US 708 analogues are considered, there should be a peak at (similar to 750-850) km s(-1). In either case, US 708 should be a member of the high-velocity tail of the distribution. Conclusions We show that the puzzling lack of confirmed surviving companion stars of thermonuclear SNe, though possibly an observation-related selection effect, may indicate a selection against high mass donors in the SD He donor channel.}, language = {en} }