@article{MazzaGuenther2021, author = {Mazza, Valeria and G{\"u}nther, Anja}, title = {City mice and country mice}, series = {Animal behaviour}, volume = {172}, journal = {Animal behaviour}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0003-3472}, doi = {10.1016/j.anbehav.2020.12.007}, pages = {197 -- 210}, year = {2021}, abstract = {The ability to produce innovative behaviour is a key determinant in the successful coping with environmental challenges and changes. The expansion of human-altered environments presents wildlife with multiple novel situations in which innovativeness could be beneficial. A better understanding of the drivers of within-species variation in innovation propensity and its consequences will provide insights into the traits enabling animals to thrive in the face of human-induced rapid environmental change. We compared problem-solving performance of 31 striped field mice, Apodemus agrarius, originating from rural or urban environments in a battery of eight foraging extraction tasks. We tested whether differences in problem-solving performance were mediated by the extent and duration of the animal's exploration of the experimental set-ups, the time required to solve the tasks, and their persistence. In addition, we tested the influence of the diversity of motor responses, as well as of behavioural traits boldness and activity on problem-solving performance. Urban individuals were better problem solvers despite rural individuals approaching faster and interacting longer with the test set-ups. Participation rates and time required to solve a task did not differ between rural and urban individuals. However, in case of failure to solve a task, rural mice were more persistent. The best predictors of solving success, aside from the area of origin, were the time spent exploring the set-ups and boldness, while activity and diversity of motor responses did not explain it. Problem-solving ability could thus be a contributing factor to the successful coping with the rapid and recent expansion of human-altered environments.}, language = {en} } @article{FischerWinterFelisattietal.2021, author = {Fischer, Martin and Winter, Bodo and Felisatti, Arianna and Myachykov, Andriy and Jeglinski-Mende, Melinda A. and Shaki, Samuel}, title = {More Instructions Make Fewer Subtractions}, series = {Frontiers in Psychology}, volume = {12}, journal = {Frontiers in Psychology}, publisher = {Frontiers Media SA}, address = {Lausanne, Schweiz}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.720616}, pages = {1 -- 3}, year = {2021}, abstract = {Research on problem solving offers insights into how humans process task-related information and which strategies they use (Newell and Simon, 1972; {\"O}llinger et al., 2014). Problem solving can be defined as the search for possible changes in one's mind (Kahneman, 2003). In a recent study, Adams et al. (2021) assessed whether the predominant problem solving strategy when making changes involves adding or subtracting elements. In order to do this, they used several examples of simple problems, such as editing text or making visual patterns symmetrical, either in naturalistic settings or on-line. The essence of the authors' findings is a strong preference to add rather than subtract elements across a diverse range of problems, including the stabilizing of artifacts, creating symmetrical patterns, or editing texts. More specifically, they succeeded in demonstrating that "participants were less likely to identify advantageous subtractive changes when the task did not (vs. did) cue them to consider subtraction, when they had only one opportunity (vs. several) to recognize the shortcomings of an additive search strategy or when they were under a higher (vs. lower) cognitive load" (Adams et al., 2021, p. 258). Addition and subtraction are generally defined as de-contextualized mathematical operations using abstract symbols (Russell, 1903/1938). Nevertheless, understanding of both symbols and operations is informed by everyday activities, such as making or breaking objects (Lakoff and N{\´u}{\~n}ez, 2000; Fischer and Shaki, 2018). The universal attribution of "addition bias" or "subtraction neglect" to problem solving activities is perhaps a convenient shorthand but it overlooks influential framing effects beyond those already acknowledged in the report and the accompanying commentary (Meyvis and Yoon, 2021). Most importantly, while Adams et al.'s study addresses an important issue, their very method of verbally instructing participants, together with lack of control over several known biases, might render their findings less than conclusive. Below, we discuss our concerns that emerged from the identified biases, namely those regarding the instructions and the experimental materials. Moreover, we refer to research from mathematical cognition that provides new insights into Adams et al.'s findings.}, language = {en} } @misc{FischerWinterFelisattietal.2021, author = {Fischer, Martin and Winter, Bodo and Felisatti, Arianna and Myachykov, Andriy and Jeglinski-Mende, Melinda A. and Shaki, Samuel}, title = {More Instructions Make Fewer Subtractions}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, volume = {12}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-55008}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550086}, pages = {1 -- 3}, year = {2021}, abstract = {Research on problem solving offers insights into how humans process task-related information and which strategies they use (Newell and Simon, 1972; {\"O}llinger et al., 2014). Problem solving can be defined as the search for possible changes in one's mind (Kahneman, 2003). In a recent study, Adams et al. (2021) assessed whether the predominant problem solving strategy when making changes involves adding or subtracting elements. In order to do this, they used several examples of simple problems, such as editing text or making visual patterns symmetrical, either in naturalistic settings or on-line. The essence of the authors' findings is a strong preference to add rather than subtract elements across a diverse range of problems, including the stabilizing of artifacts, creating symmetrical patterns, or editing texts. More specifically, they succeeded in demonstrating that "participants were less likely to identify advantageous subtractive changes when the task did not (vs. did) cue them to consider subtraction, when they had only one opportunity (vs. several) to recognize the shortcomings of an additive search strategy or when they were under a higher (vs. lower) cognitive load" (Adams et al., 2021, p. 258). Addition and subtraction are generally defined as de-contextualized mathematical operations using abstract symbols (Russell, 1903/1938). Nevertheless, understanding of both symbols and operations is informed by everyday activities, such as making or breaking objects (Lakoff and N{\´u}{\~n}ez, 2000; Fischer and Shaki, 2018). The universal attribution of "addition bias" or "subtraction neglect" to problem solving activities is perhaps a convenient shorthand but it overlooks influential framing effects beyond those already acknowledged in the report and the accompanying commentary (Meyvis and Yoon, 2021). Most importantly, while Adams et al.'s study addresses an important issue, their very method of verbally instructing participants, together with lack of control over several known biases, might render their findings less than conclusive. Below, we discuss our concerns that emerged from the identified biases, namely those regarding the instructions and the experimental materials. Moreover, we refer to research from mathematical cognition that provides new insights into Adams et al.'s findings.}, language = {en} } @article{WernerRaabFischer2018, author = {Werner, Karsten and Raab, Markus and Fischer, Martin H.}, title = {Moving arms}, series = {Thinking \& Reasoning}, volume = {25}, journal = {Thinking \& Reasoning}, number = {2}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1354-6783}, doi = {10.1080/13546783.2018.1494630}, pages = {171 -- 191}, year = {2018}, abstract = {Embodied cognition postulates a bi-directional link between the human body and its cognitive functions. Whether this holds for higher cognitive functions such as problem solving is unknown. We predicted that arm movement manipulations performed by the participants could affect the problem-solving solutions. We tested this prediction in quantitative reasoning tasks that allowed two solutions to each problem (addition or subtraction). In two studies with healthy adults (N=53 and N=50), we found an effect of problem-congruent movements on problem solutions. Consistent with embodied cognition, sensorimotor information gained via right or left arm movements affects the solution in different types of problem-solving tasks.}, language = {en} } @misc{WernerRaabFischer2018, author = {Werner, Karsten and Raab, Markus and Fischer, Martin H.}, title = {Moving arms}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {488}, issn = {1866-8364}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420579}, pages = {22}, year = {2018}, abstract = {Embodied cognition postulates a bi-directional link between the human body and its cognitive functions. Whether this holds for higher cognitive functions such as problem solving is unknown. We predicted that arm movement manipulations performed by the participants could affect the problem-solving solutions. We tested this prediction in quantitative reasoning tasks that allowed two solutions to each problem (addition or subtraction). In two studies with healthy adults (N=53 and N=50), we found an effect of problem-congruent movements on problem solutions. Consistent with embodied cognition, sensorimotor information gained via right or left arm movements affects the solution in different types of problem-solving tasks.}, language = {en} }