@article{BochMuellerPratietal.2018, author = {Boch, Steffen and M{\"u}ller, J{\"o}rg and Prati, Daniel and Fischer, Markus}, title = {Low-intensity management promotes bryophyte diversity in grasslands}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {38}, publisher = {Floristisch-Soziologische Arbeitsgemeinschaft}, address = {G{\"o}ttingen}, issn = {0722-494X}, doi = {10.14471/2018.38.014}, pages = {311 -- 328}, year = {2018}, abstract = {Bryophytes constitute an important and permanent component of the grassland flora and diversity in Europe. As most bryophyte species are sensitive to habitat change, their diversity is likely to decline following land-use intensification. Most previous studies on bryophyte diversity focused on specific habitats of high bryophyte diversity, such as bogs, montane grasslands, or calcareous dry grasslands. In contrast, mesic grasslands are rarely studied, although they are the most common grassland habitat in Europe. They are secondary vegetation, maintained by agricultural use and thus, are influenced by different forms of land use. We studied bryophyte species richness in three regions in Germany, in 707 plots of 16 m(2) representing different land-use types and environmental conditions. Our study is one of the few to inspect the relationships between bryophyte richness and land use across contrasting regions and using a high number of replicates. Among the managed grasslands, pastures harboured 2.5 times more bryophyte species than meadows and mown pastures. Similarly, bryophyte cover was about twice as high in fallows and pastures than in meadows and mown pastures. Among the pastures, bryophyte species richness was about three times higher in sheep grazed plots than in the ones grazed by cattle or horses. In general, bryophyte species richness and cover was more than 50\% lower in fertilized than in unfertilized plots. Moreover, the amount of suitable substrates was linked to bryophyte diversity. Species richness of bryophytes growing on stones increased with stone cover, and the one of bryophytes growing on bark and deadwood increased with larger values of woody plant species and deadwood cover. Our findings highlight the importance of low-intensity land use and high structural heterogeneity for bryophyte conservation. They also caution against an intensification of traditionally managed pastures. In the light of our results, we recommend to maintain low-intensity sheep grazing on sites with low productivity, such as slopes on shallow soils.}, language = {en} } @article{BuschKlausPenoneetal.2017, author = {Busch, Verena and Klaus, Valentin H. and Penone, Caterina and Sch{\"a}fer, Deborah and Boch, Steffen and Prati, Daniel and M{\"u}ller, J{\"o}rg and Socher, Stephanie A. and Niinemets, {\"U}lo and Penuelas, Josep and H{\"o}lzel, Norbert and Fischer, Markus and Kleinebecker, Till}, title = {Nutrient stoichiometry and land use rather than species richness determine plant functional diversity}, series = {Ecology and evolution}, volume = {8}, journal = {Ecology and evolution}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.3609}, pages = {601 -- 616}, year = {2017}, abstract = {Plant functional traits reflect individual and community ecological strategies. They allow the detection of directional changes in community dynamics and ecosystemic processes, being an additional tool to assess biodiversity than species richness. Analysis of functional patterns in plant communities provides mechanistic insight into biodiversity alterations due to anthropogenic activity. Although studies have consi-dered of either anthropogenic management or nutrient availability on functional traits in temperate grasslands, studies combining effects of both drivers are scarce. Here, we assessed the impacts of management intensity (fertilization, mowing, grazing), nutrient stoichiometry (C, N, P, K), and vegetation composition on community-weighted means (CWMs) and functional diversity (Rao's Q) from seven plant traits in 150 grasslands in three regions in Germany, using data of 6 years. Land use and nutrient stoichiometry accounted for larger proportions of model variance of CWM and Rao's Q than species richness and productivity. Grazing affected all analyzed trait groups; fertilization and mowing only impacted generative traits. Grazing was clearly associated with nutrient retention strategies, that is, investing in durable structures and production of fewer, less variable seed. Phenological variability was increased. Fertilization and mowing decreased seed number/mass variability, indicating competition-related effects. Impacts of nutrient stoichiometry on trait syndromes varied. Nutrient limitation (large N:P, C:N ratios) promoted species with conservative strategies, that is, investment in durable plant structures rather than fast growth, fewer seed, and delayed flowering onset. In contrast to seed mass, leaf-economics variability was reduced under P shortage. Species diversity was positively associated with the variability of generative traits. Synthesis. Here, land use, nutrient availability, species richness, and plant functional strategies have been shown to interact complexly, driving community composition, and vegetation responses to management intensity. We suggest that deeper understanding of underlying mechanisms shaping community assembly and biodiversity will require analyzing all these parameters.}, language = {en} } @phdthesis{Muench2021, author = {M{\"u}nch, Steffen}, title = {The relevance of the aeolian transport path for the spread of antibiotic-resistant bacteria on arable fields}, doi = {10.25932/publishup-53608}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-536089}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 140}, year = {2021}, abstract = {The spread of antibiotic-resistant bacteria poses a globally increasing threat to public health care. The excessive use of antibiotics in animal husbandry can develop resistances in the stables. Transmission through direct contact with animals and contamination of food has already been proven. The excrements of the animals combined with a binding material enable a further potential path of spread into the environment, if they are used as organic manure in agricultural landscapes. As most of the airborne bacteria are attached to particulate matter, the focus of the work will be the atmospheric dispersal via the dust fraction. Field measurements on arable lands in Brandenburg, Germany and wind erosion studies in a wind tunnel were conducted to investigate the risk of a potential atmospheric dust-associated spread of antibiotic-resistant bacteria from poultry manure fertilized agricultural soils. The focus was to (i) characterize the conditions for aerosolization and (ii) qualify and quantify dust emissions during agricultural operations and wind erosion. PM10 (PM, particulate matter with an aerodynamic diameter smaller than 10 µm) emission factors and bacterial fluxes for poultry manure application and incorporation have not been previously reported before. The contribution to dust emissions depends on the water content of the manure, which is affected by the manure pretreatment (fresh, composted, stored, dried), as well as by the intensity of manure spreading from the manure spreader. During poultry manure application, PM10 emission ranged between 0.05 kg ha-1 and 8.37 kg ha-1. For comparison, the subsequent land preparation contributes to 0.35 - 1.15 kg ha-1 of PM10 emissions. Manure particles were still part of dust emissions but they were accounted to be less than 1\% of total PM10 emissions due to the dilution of poultry manure in the soil after manure incorporation. Bacterial emissions of fecal origin were more relevant during manure application than during the subsequent manure incorporation, although PM10 emissions of manure incorporation were larger than PM10 emissions of manure application for the non-dried manure variants. Wind erosion leads to preferred detachment of manure particles from sandy soils, when poultry manure has been recently incorporated. Sorting effects were determined between the low-density organic particles of manure origin and the soil particles of mineral origin close above the threshold of 7 m s-1. In dependence to the wind speed, potential erosion rates between 101 and 854 kg ha-1 were identified, if 6 t ha-1 of poultry manure were applied. Microbial investigation showed that manure bacteria got detached more easily from the soil surface during wind erosion, due to their attachment on manure particles. Although antibiotic-resistant bacteria (ESBL-producing E. coli) were still found in the poultry barns, no further contamination could be detected with them in the manure, fertilized soils or in the dust generated by manure application, land preparation or wind erosion. Parallel studies of this project showed that storage of poultry manure for a few days (36 - 72 h) is sufficient to inactivate ESBL-producing E. coli. Further antibiotic-resistant bacteria, i.e. MRSA and VRE, were only found sporadically in the stables and not at all in the dust. Therefore, based on the results of this work, the risk of a potential infection by dust-associated antibiotic-resistant bacteria can be considered as low.}, language = {en} } @misc{BochMuellerPratietal.2018, author = {Boch, Steffen and M{\"u}ller, J{\"o}rg and Prati, Daniel and Fischer, Markus}, title = {Low-intensity management promotes bryophyte diversity in grasslands}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1049}, issn = {1866-8372}, doi = {10.25932/publishup-46008}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460086}, pages = {311 -- 328}, year = {2018}, abstract = {Bryophytes constitute an important and permanent component of the grassland flora and diversity in Europe. As most bryophyte species are sensitive to habitat change, their diversity is likely to decline following land-use intensification. Most previous studies on bryophyte diversity focused on specific habitats of high bryophyte diversity, such as bogs, montane grasslands, or calcareous dry grasslands. In contrast, mesic grasslands are rarely studied, although they are the most common grassland habitat in Europe. They are secondary vegetation, maintained by agricultural use and thus, are influenced by different forms of land use. We studied bryophyte species richness in three regions in Germany, in 707 plots of 16 m2 representing different land-use types and environmental conditions. Our study is one of the few to inspect the relationships between bryophyte richness and land use across contrasting regions and using a high number of replicates.Among the managed grasslands, pastures harboured 2.5 times more bryophyte species than mead-ows and mown pastures. Similarly, bryophyte cover was about twice as high in fallows and pastures than in meadows and mown pastures. Among the pastures, bryophyte species richness was about three times higher in sheep grazed plots than in the ones grazed by cattle or horses. In general, bryophyte species richness and cover was more than 50\% lower in fertilized than in unfertilized plots. Moreover, the amount of suitable substrates was linked to bryophyte diversity. Species richness of bryophytes growing on stones increased with stone cover, and the one of bryophytes growing on bark and deadwood increased with larger values of woody plant species and deadwood cover. Our findings highlight the importance of low-intensity land use and high structural heterogeneity for bryophyte conservation. They also caution against an intensification of traditionally managed pastures. In the light of our results, we recommend to maintain low-intensity sheep grazing on sites with low productivity, such as slopes on shallow soils.}, language = {en} } @misc{BuschKlausPenoneetal.2017, author = {Busch, Verena and Klaus, Valentin H. and Penone, Caterina and Sch{\"a}fer, Deborah and Boch, Steffen and Prati, Daniel and M{\"u}ller, J{\"o}rg and Socher, Stephanie A. and Niinemets, {\"U}lo and Pe{\~n}uelas, Josep and H{\"o}lzel, Norbert and Fischer, Markus and Kleinebecker, Till}, title = {Nutrient stoichiometry and land use rather than species richness determine plant functional diversity}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {651}, issn = {1866-8372}, doi = {10.25932/publishup-42461}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424617}, pages = {16}, year = {2017}, abstract = {Plant functional traits reflect individual and community ecological strategies. They allow the detection of directional changes in community dynamics and ecosystemic processes, being an additional tool to assess biodiversity than species richness. Analysis of functional patterns in plant communities provides mechanistic insight into biodiversity alterations due to anthropogenic activity. Although studies have considered of either anthropogenic management or nutrient availability on functional traits in temperate grasslands, studies combining effects of both drivers are scarce. Here, we assessed the impacts of management intensity (fertilization, mowing, grazing), nutrient stoichiometry (C, N, P, K), and vegetation composition on community-weighted means (CWMs) and functional diversity (Rao's Q) from seven plant traits in 150 grasslands in three regions in Germany, using data of 6 years. Land use and nutrient stoichiometry accounted for larger proportions of model variance of CWM and Rao's Q than species richness and productivity. Grazing affected all analyzed trait groups; fertilization and mowing only impacted generative traits. Grazing was clearly associated with nutrient retention strategies, that is, investing in durable structures and production of fewer, less variable seed. Phenological variability was increased. Fertilization and mowing decreased seed number/mass variability, indicating competition-related effects. Impacts of nutrient stoichiometry on trait syndromes varied. Nutrient limitation (large N:P, C:N ratios) promoted species with conservative strategies, that is, investment in durable plant structures rather than fast growth, fewer seed, and delayed flowering onset. In contrast to seed mass, leaf-economics variability was reduced under P shortage. Species diversity was positively associated with the variability of generative traits. Synthesis. Here, land use, nutrient availability, species richness, and plant functional strategies have been shown to interact complexly, driving community composition, and vegetation responses to management intensity. We suggest that deeper understanding of underlying mechanisms shaping community assembly and biodiversity will require analyzing all these parameters.}, language = {en} } @article{ManningGossnerBossdorfetal.2015, author = {Manning, Pete and Gossner, Martin M. and Bossdorf, Oliver and Allan, Eric and Zhang, Yuan-Ye and Prati, Daniel and Bl{\"u}thgen, Nico and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and H{\"o}lzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Klein, Alexandra Maria and Kleinebecker, Till and Krauss, Jochen and Lange, Markus and M{\"u}ller, J{\"o}rg and Pasalic, Esther and Socher, Stephanie A. and Tschapka, Marco and T{\"u}rke, Manfred and Weiner, Christiane and Werner, Michael and Gockel, Sonja and Hemp, Andreas and Renner, Swen C. and Wells, Konstans and Buscot, Francois and Kalko, Elisabeth K. V. and Linsenmair, Karl Eduard and Weisser, Wolfgang W. and Fischer, Markus}, title = {Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa}, series = {Ecology : a publication of the Ecological Society of America}, volume = {96}, journal = {Ecology : a publication of the Ecological Society of America}, number = {6}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, doi = {10.1890/14-1307.1}, pages = {1492 -- 1501}, year = {2015}, abstract = {Land-use intensification is a key driver of biodiversity change. However, little is known about how it alters relationships between the diversities of different taxonomic groups, which are often correlated due to shared environmental drivers and trophic interactions. Using data from 150 grassland sites, we examined how land-use intensification (increased fertilization, higher livestock densities, and increased mowing frequency) altered correlations between the species richness of 15 plant, invertebrate, and vertebrate taxa. We found that 54\% of pairwise correlations between taxonomic groups were significant and positive among all grasslands, while only one was negative. Higher land-use intensity substantially weakened these correlations(35\% decrease in rand 43\% fewer significant pairwise correlations at high intensity), a pattern which may emerge as a result of biodiversity declines and the breakdown of specialized relationships in these conditions. Nevertheless, some groups (Coleoptera, Heteroptera, Hymenoptera and Orthoptera) were consistently correlated with multidiversity, an aggregate measure of total biodiversity comprised of the standardized diversities of multiple taxa, at both high and lowland-use intensity. The form of intensification was also important; increased fertilization and mowing frequency typically weakened plant-plant and plant-primary consumer correlations, whereas grazing intensification did not. This may reflect decreased habitat heterogeneity under mowing and fertilization and increased habitat heterogeneity under grazing. While these results urge caution in using certain taxonomic groups to monitor impacts of agricultural management on biodiversity, they also suggest that the diversities of some groups are reasonably robust indicators of total biodiversity across a range of conditions.}, language = {en} }