@article{IslamKhalilMaenneretal.2017, author = {Islam, Khan M. S. and Khalil, Mahmoud Abd Elhamid and Maenner, Klaus and Raila, Jens and Rawel, Harshadrai Manilal and Zentek, J{\"u}rgen and Schweigert, Florian J.}, title = {Lutein Specific Relationships among Some Spectrophotometric and Colorimetric Parameters of Chicken Egg Yolk}, series = {The journal of poultry science}, volume = {54}, journal = {The journal of poultry science}, publisher = {Japan Poultry Science Association}, address = {Tsukuba}, issn = {1346-7395}, doi = {10.2141/jpsa.0160065}, pages = {271 -- 277}, year = {2017}, abstract = {Lutein is an essential dietary carotenoid with health benefits and is inter alia responsible for the colouration of egg yolk. The relationship between lutein accumulation and egg yolk colouration was therefore studied in more detail. After feeding a low-luteine diet for 21 days, 14 birds (Lohmann brown hens aged 20 weeks) were fed a diet containing marigold (80 mg lutein/kg feed) and 14 other birds were fed a diet containing oleoresin (45 mg lutein/kg feed) for 21 days; for both groups of birds, this feeding period was followed by withdrawal for 21 days. The Roche Yolk Colour Fan (RYCF) score (0 to 15, where higher values denote greater colour intensity; R-2=0.87; P<0.01) and redness (R-2=0.89; P<0.01) increased with increasing lutein content of egg yolk. Total carotenoid content had a poor relationship with lightness (R-2=0.13; P>0.05) and yellowness (R-2=0.12; P>0.05) of the yolk. It may be concluded that increased lutein is potentially responsible for an increased RYCF score and redness (a*), but decreased yellowness (b*) and lightness (L*), of egg yolk.}, language = {en} } @misc{KlopschBaldermannVossetal.2018, author = {Klopsch, Rebecca and Baldermann, Susanne and Voss, Alexander and Rohn, Sascha and Schreiner, Monika and Neugart, Susanne}, title = {Bread enriched with legume microgreens and leaves}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1064}, issn = {1866-8372}, doi = {10.25932/publishup-46870}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468707}, pages = {21}, year = {2018}, abstract = {Flavonoids, carotenoids, and chlorophylls were characterized in microgreens and leaves of pea (Pisum sativum) and lupin (Lupinus angustifolius) as these metabolites change during ontogeny. All metabolites were higher in the leaves for both species. Acylated quercetin and kaempferol sophorotrioses were predominant in pea. Genistein and malonylated chrysoeriol were predominant in lupin. Further, the impact of breadmaking on these metabolites using pea and lupin material of two ontogenetic stages as an added ingredient in wheat-based bread was assessed. In "pea microgreen bread" no decrease of quercetin was found with regard to the non-processed plant material. However kaempferol glycosides showed slight decreases induced by the breadmaking process in "pea microgreen bread" and "pea leaf bread." In "lupin microgreen bread" no decrease of genistein compared to the non-processed plant material was found. Chrysoeriol glycosides showed slight decreases induced by the breadmaking process in "lupin microgreen bread" and "lupin leaf bread." In all breads, carotenoids and chlorophylls were depleted however pheophytin formation was caused. Thus, pea and lupin microgreens and leaves are suitable, natural ingredients for enhancing health-promoting secondary plant metabolites in bread and may even be used to tailor bread for specific consumer health needs.}, language = {en} } @article{KlopschBaldermannVossetal.2018, author = {Klopsch, Rebecca and Baldermann, Susanne and Voss, Alexander and Rohn, Sascha and Schreiner, Monika and Neugart, Susanne}, title = {Bread enriched with legume microgreens and leaves}, series = {Frontiers in chemistry}, volume = {6}, journal = {Frontiers in chemistry}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-2646}, doi = {10.3389/fchem.2018.00322}, pages = {19}, year = {2018}, abstract = {Flavonoids, carotenoids, and chlorophylls were characterized in microgreens and leaves of pea (Pisum sativum) and lupin (Lupinus angustifolius) as these metabolites change during ontogeny. All metabolites were higher in the leaves for both species. Acylated quercetin and kaempferol sophorotrioses were predominant in pea. Genistein and malonylated chrysoeriol were predominant in lupin. Further, the impact of breadmaking on these metabolites using pea and lupin material of two ontogenetic stages as an added ingredient in wheat-based bread was assessed. In "pea microgreen bread" no decrease of quercetin was found with regard to the non-processed plant material. However kaempferol glycosides showed slight decreases induced by the breadmaking process in "pea microgreen bread" and "pea leaf bread." In "lupin microgreen bread" no decrease of genistein compared to the non-processed plant material was found. Chrysoeriol glycosides showed slight decreases induced by the breadmaking process in "lupin microgreen bread" and "lupin leaf bread." In all breads, carotenoids and chlorophylls were depleted however pheophytin formation was caused. Thus, pea and lupin microgreens and leaves are suitable, natural ingredients for enhancing health-promoting secondary plant metabolites in bread and may even be used to tailor bread for specific consumer health needs.}, language = {en} }