@article{WolffGastEversetal.2021, author = {Wolff, Martin and Gast, Klaus and Evers, Andreas and Kurz, Michael and Pfeiffer-Marek, Stefania and Sch{\"u}ler, Anja and Seckler, Robert and Thalhammer, Anja}, title = {A Conserved Hydrophobic Moiety and Helix-Helix Interactions Drive the Self-Assembly of the Incretin Analog Exendin-4}, series = {Biomolecules}, volume = {11}, journal = {Biomolecules}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2218-273X}, doi = {10.3390/biom11091305}, pages = {20}, year = {2021}, abstract = {Exendin-4 is a pharmaceutical peptide used in the control of insulin secretion. Structural information on exendin-4 and related peptides especially on the level of quaternary structure is scarce. We present the first published association equilibria of exendin-4 directly measured by static and dynamic light scattering. We show that exendin-4 oligomerization is pH dependent and that these oligomers are of low compactness. We relate our experimental results to a structural hypothesis to describe molecular details of exendin-4 oligomers. Discussion of the validity of this hypothesis is based on NMR, circular dichroism and fluorescence spectroscopy, and light scattering data on exendin-4 and a set of exendin-4 derived peptides. The essential forces driving oligomerization of exendin-4 are helix-helix interactions and interactions of a conserved hydrophobic moiety. Our structural hypothesis suggests that key interactions of exendin-4 monomers in the experimentally supported trimer take place between a defined helical segment and a hydrophobic triangle constituted by the Phe22 residues of the three monomeric subunits. Our data rationalize that Val19 might function as an anchor in the N-terminus of the interacting helix-region and that Trp25 is partially shielded in the oligomer by C-terminal amino acids of the same monomer. Our structural hypothesis suggests that the Trp25 residues do not interact with each other, but with C-terminal Pro residues of their own monomers.}, language = {en} } @misc{WolffGastEversetal.2021, author = {Wolff, Martin and Gast, Klaus and Evers, Andreas and Kurz, Michael and Pfeiffer-Marek, Stefania and Sch{\"u}ler, Anja and Seckler, Robert and Thalhammer, Anja}, title = {A Conserved Hydrophobic Moiety and Helix-Helix Interactions Drive the Self-Assembly of the Incretin Analog Exendin-4}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-52208}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522081}, pages = {22}, year = {2021}, abstract = {Exendin-4 is a pharmaceutical peptide used in the control of insulin secretion. Structural information on exendin-4 and related peptides especially on the level of quaternary structure is scarce. We present the first published association equilibria of exendin-4 directly measured by static and dynamic light scattering. We show that exendin-4 oligomerization is pH dependent and that these oligomers are of low compactness. We relate our experimental results to a structural hypothesis to describe molecular details of exendin-4 oligomers. Discussion of the validity of this hypothesis is based on NMR, circular dichroism and fluorescence spectroscopy, and light scattering data on exendin-4 and a set of exendin-4 derived peptides. The essential forces driving oligomerization of exendin-4 are helix-helix interactions and interactions of a conserved hydrophobic moiety. Our structural hypothesis suggests that key interactions of exendin-4 monomers in the experimentally supported trimer take place between a defined helical segment and a hydrophobic triangle constituted by the Phe22 residues of the three monomeric subunits. Our data rationalize that Val19 might function as an anchor in the N-terminus of the interacting helix-region and that Trp25 is partially shielded in the oligomer by C-terminal amino acids of the same monomer. Our structural hypothesis suggests that the Trp25 residues do not interact with each other, but with C-terminal Pro residues of their own monomers.}, language = {en} } @phdthesis{Lepro2021, author = {Lepro, Valentino}, title = {Experimental and theoretical study on amoeboid cell-cargo active motion}, doi = {10.25932/publishup-49089}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-490890}, school = {Universit{\"a}t Potsdam}, pages = {xx, 114}, year = {2021}, abstract = {As society paves its way towards device miniaturization and precision medicine, micro-scale actuation and guided transport become increasingly prominent research fields, with high potential impact in both technological and clinical contexts. In order to accomplish directed motion of micron-sized objects, as biosensors and drug-releasing microparticles, towards specific target sites, a promising strategy is the use of living cells as smart biochemically-powered carriers, building the so-called bio-hybrid systems. Inspired by leukocytes, native cells of living organisms efficiently migrating to critical targets as tumor tissue, an emerging concept is to exploit the amoeboid crawling motility of such cells as mean of transport for drug delivery applications. In the research work described in this thesis, I synergistically applied experimental, computational and theoretical modeling approaches to investigate the behaviour and transport mechanism of a novel kind of bio-hybrid system for active transport at the micro-scale, referred to as cellular truck. This system consists of an amoeboid crawling cell, the carrier, attached to a microparticle, the cargo, which may ideally be drug-loaded for specific therapeutic treatments. For the purposes of experimental investigation, I employed the amoeba Dictyostelium discoideum as crawling cellular carrier, being a renowned model organism for leukocyte migration and, in general, for eukaryotic cell motility. The performed experiments revealed a complex recurrent cell-cargo relative motion, together with an intermittent motility of the cellular truck as a whole. The evidence suggests the presence of cargoes on amoeboid cells to act as mechanical stimulus leading cell polarization, thus promoting cell motility and giving rise to the observed intermittent dynamics of the truck. Particularly, bursts in cytoskeletal polarity along the cell-cargo axis have been found to occur in time with a rate dependent on cargo geometrical features, as particle diameter. Overall, the collected experimental evidence pointed out a pivotal role of cell-cargo interactions in the emergent cellular truck motion dynamics. Especially, they can determine the transport capabilities of amoeboid cells, as the cargo size significantly impacts the cytoskeletal activity and repolarization dynamics along the cell-cargo axis, the latter responsible for truck displacement and reorientation. Furthermore, I developed a modeling framework, built upon the experimental evidence on cellular truck behaviour, that connects the relative dynamics and interactions arising at the truck scale with the actual particle transport dynamics. In fact, numerical simulations of the proposed model successfully reproduced the phenomenology of the cell-cargo system, while enabling the prediction of the transport properties of cellular trucks over larger spatial and temporal scales. The theoretical analysis provided a deeper understanding of the role of cell-cargo interaction on mass transport, unveiling in particular how the long-time transport efficiency is governed by the interplay between the persistence time of cell polarity and time scales of the relative dynamics stemming from cell-cargo interaction. Interestingly, the model predicts the existence of an optimal cargo size, enhancing the diffusivity of cellular trucks; this is in line with previous independent experimental data, which appeared rather counterintuitive and had no explanation prior to this study. In conclusion, my research work shed light on the importance of cargo-carrier interactions in the context of crawling cell-mediated particle transport, and provides a prototypical, multifaceted framework for the analysis and modelling of such complex bio-hybrid systems and their perspective optimization.}, language = {en} } @phdthesis{Landau2020, author = {Landau, Livnat}, title = {Mechanical stimulation of in-vitro tissue growth using magnetic beads}, pages = {112}, year = {2020}, abstract = {Cells and tissues are sensitive to mechanical forces applied to them. In particular, bone forming cells and connective tissues, composed of cells embedded in fibrous extracellular matrix (ECM), are continuously remodeled in response to the loads they bear. The mechanoresponses of cells embedded in tissue include proliferation, differentiation, apoptosis, internal signaling between cells, and formation and resorption of tissue. Experimental in-vitro systems of various designs have demonstrated that forces affect tissue growth, maturation and mineralization. However, the results depended on different parameters such as the type and magnitude of the force applied in each study. Some experiments demonstrated that applied forces increase cell proliferation and inhibit cell maturation rate, while other studies found the opposite effect. When the effect of different magnitudes of forces was compared, some studies showed that higher forces resulted in a cell proliferation increase or differentiation decrease, while other studies observed the opposite trend or no trend at all. In this study, MC3T3-E1 cells, a cell line of pre-osteoblasts (bone forming cells), was used. In this cell line, cell differentiation is known to accelerate after cells stop proliferating, typically at confluency. This makes this cell line an interesting subject for studying the influence of forces on the switch between the proliferation stage of the precursor cell and the differentiation to the mature osteoblasts. A new experimental system was designed to perform systematic investigations of the influence of the type and magnitude of forces on tissue growth. A single well plate contained an array of 80 rectangular pores. Each pore was seeded with MC3T3-E1 cells. The culture medium contained magnetic beads (MBs) of 4.5 μm in diameter that were incorporated into the pre-osteoblast cells. Using an N52 neodymium magnet, forces ranging over three orders of magnitude were applied to MBs incorporated in cells at 10 different distances from the magnet. The amount of formed tissue was assessed after 24 days of culture. The experimental design allowed to obtain data concerning (i) the influence of the type of the force (static, oscillating, no force) on tissue growth; (ii) the influence of the magnitude of force (pN-nN range); (iii) the effect of functionalizing the magnetic beads with the tripeptide Arg-Gly-Asp (RGD). To learn about cell differentiation state, in the final state of the tissue growth experiments, an analysis for the expression of alkaline phosphatase (ALP), a well - known marker of osteoblast differentiation, was performed. The experiments showed that the application of static magnetic forces increased tissue growth compared to control, while oscillating forces resulted in tissue growth reduction. A statistically significant positive correlation was found between the amount of tissue grown and the magnitude of the oscillating magnetic force. A positive but non-significant correlation of the amount of tissue with the magnitude of forces was obtained when static forces were applied. Functionalizing the MBs with RGD peptides and applying oscillating forces resulted in an increase of tissue growth relative to tissues incubated with "plain" epoxy MBs. ALP expression decreased as a function of the magnitude of force both when static and oscillating forces were applied. ALP stain intensity was reduced relative to control when oscillating forces were applied and was not significantly different than control for static forces. The suggested interpretation of the experimental findings is that larger mechanical forces delay cell maturation and keep the pre-osteoblasts in a more proliferative stage characterized by more tissue formed and lower expression of ALP. While the influence of the force magnitude can be well explained by an effect of the force on the switch between proliferation and differentiation, the influence of force type (static or oscillating) is less clear. In particular, it is challenging to reconcile the reduction of tissue formed under oscillating forces as compared to controls with the simultaneous reduction of ALP expression. To better understand this, it may be necessary to refine the staining protocol of the scaffolds and to include the amount and structure of ECM as well as other factors that were not monitored in the experiment and which may influence tissue growth and maturation. The developed experimental system proved well suited for a systematic and efficient study of the mechanoresponsiveness of tissue growth, it allowed a study of the dependence of tissue growth on force magnitude ranging over three orders of magnitude, and a comparison between the effect of static and oscillating forces. Future experiments can explore the multiple parameters that affect tissue growth as a function of the magnitude of the force: by applying different time-dependent forces; by extending the force range studied; or by using different cell lines and manipulating the mechanotransduction in the cells biochemically.}, language = {en} } @phdthesis{RodriguezLoureiro2018, author = {Rodriguez Loureiro, Ignacio}, title = {Structural characterization of single and interacting soft interfaces displaying brushes of synthetic or biomolecular polymers}, doi = {10.25932/publishup-42367}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423675}, school = {Universit{\"a}t Potsdam}, pages = {132}, year = {2018}, abstract = {The interaction between surfaces displaying end-grafted hydrophilic polymer brushes plays important roles in biology and in many wet-technological applications. The outer surfaces of Gram-negative bacteria, for example, are composed of lipopolysaccharide (LPS) molecules exposing oligo- and polysaccharides to the aqueous environment. This unique, structurally complex biological interface is of great scientific interest as it mediates the interaction of bacteria with neighboring bacteria in colonies and biofilms. The interaction between polymer-decorated surfaces is generally coupled to the distance-dependent conformation of the polymer chains. Therefore, structural insight into the interacting surfaces is a prerequisite to understand the interaction characteristics as well as the underlying physical mechanisms. This problem has been addressed by theory, but accurate experimental data on polymer conformations under confinement are rare, because obtaining perturbation-free structural insight into buried soft interfaces is inherently difficult. In this thesis, lipid membrane surfaces decorated with hydrophilic polymers of technological and biological relevance are investigated under controlled interaction conditions, i.e., at defined surface separations. For this purpose, dedicated sample architectures and experimental tools are developed. Via ellipsometry and neutron reflectometry pressure-distance curves and distance-dependent polymer conformations in terms of brush compression and reciprocative interpenetration are determined. Additional element-specific structural insight into the end-point distribution of interacting brushes is obtained by standing-wave x-ray fluorescence (SWXF). The methodology is first established for poly[ethylene glycol] (PEG) brushes of defined length and grafting density. For this system, neutron reflectometry revealed pronounced brush interpenetration, which is not captured in common brush theories and therefore motivates rigorous simulation-based treatments. In the second step the same approach is applied to realistic mimics of the outer surfaces of Gram-negative bacteria: monolayers of wild type LPSs extracted from E. Coli O55:B5 displaying strain-specific O-side chains. The neutron reflectometry experiments yield unprecedented structural insight into bacterial interactions, which are of great relevance for the properties of biofilms.}, language = {en} } @phdthesis{Ehrig2017, author = {Ehrig, Sebastian}, title = {3D curvature and its role on tissue organization}, school = {Universit{\"a}t Potsdam}, pages = {132}, year = {2017}, abstract = {Shape change is a fundamental process occurring in biological tissues during embryonic development and regeneration of tissues and organs. This process is regulated by cells that are constrained within a complex environment of biochemical and physical cues. The spatial constraint due to geometry has a determining role on tissue mechanics and the spatial distribution of force patterns that, in turn, influences the organization of the tissue structure. An understanding of the underlying principles of tissue organization may have wide consequences for the understanding of healing processes and the development of organs and, as such, is of fundamental interest for the tissue engineering community. This thesis aims to further our understanding of how the collective behaviour of cells is influenced by the 3D geometry of the environment. Previous research studying the role of geometry on tissue growth has mainly focused either on flat surfaces or on substrates where at least one of the principal curvatures is zero. In the present work, tissue growth from MC3T3-E1 pre-osteoblasts was investigated on surfaces of controlled mean curvature. One key aspect of this thesis was the development of substrates of controlled mean curvature and their visualization in 3D. It was demonstrated that substrates of controlled mean curvature suitable for cell culture can be fabricated using liquid polymers and surface tension effects. Using these substrates, it was shown that the mean surface curvature has a strong impact on the rate of tissue growth and on the organization of the tissue structure. It was thereby not only demonstrated that the amount of tissue produced (i.e. growth rates) by the cells depends on the mean curvature of the substrate but also that the tissue surface behaves like a viscous fluid with an equilibrium shape governed by the Laplace-Young-law. It was observed that more tissue was formed on highly concave surfaces compared to flat or convex surfaces. Motivated by these observations, an analytical model was developed, where the rate of tissue growth is a function of the mean curvature, which could successfully describe the growth kinetics. This model was also able to reproduce the growth kinetics of previous experiments where tissues have been cultured in straight-sided prismatic pores. A second part of this thesis focuses on the tissue structure, which influences the mechanical properties of the mature bone tissue. Since the extracellular matrix is produced by the cells, the cell orientation has a strong impact on the direction of the tissue fibres. In addition, it was recently shown that some cell types exhibit collective alignment similar to liquid crystals. Based on this observation, a computational model of self-propelled active particles was developed to explore in an abstract manner how the collective behaviour of cells is influenced by 3D curvature. It was demonstrated that the 3D curvature has a strong impact on the self-organization of active particles and gives, therefore, first insights into the principles of self-organization of cells on curved surfaces.}, language = {en} } @phdthesis{Dunlop2015, author = {Dunlop, John William Chapman}, title = {The physics of shape changes in biology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96554}, school = {Universit{\"a}t Potsdam}, pages = {vii, 202}, year = {2015}, abstract = {Biological materials, in addition to having remarkable physical properties, can also change shape and volume. These shape and volume changes allow organisms to form new tissue during growth and morphogenesis, as well as to repair and remodel old tissues. In addition shape or volume changes in an existing tissue can lead to useful motion or force generation (actuation) that may even still function in the dead organism, such as in the well known example of the hygroscopic opening or closing behaviour of the pine cone. Both growth and actuation of tissues are mediated, in addition to biochemical factors, by the physical constraints of the surrounding environment and the architecture of the underlying tissue. This habilitation thesis describes biophysical studies carried out over the past years on growth and swelling mediated shape changes in biological systems. These studies use a combination of theoretical and experimental tools to attempt to elucidate the physical mechanisms governing geometry controlled tissue growth and geometry constrained tissue swelling. It is hoped that in addition to helping understand fundamental processes of growth and morphogenesis, ideas stemming from such studies can also be used to design new materials for medicine and robotics.}, language = {en} } @phdthesis{Mauri2014, author = {Mauri, Marco}, title = {A model for sigma factor competition in bacterial cells}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-72098}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2014}, abstract = {Bacteria respond to changing environmental conditions by switching the global pattern of expressed genes. In response to specific environmental stresses the cell activates several stress-specific molecules such as sigma factors. They reversibly bind the RNA polymerase to form the so-called holoenzyme and direct it towards the appropriate stress response genes. In exponentially growing E. coli cells, the majority of the transcriptional activity is carried out by the housekeeping sigma factor, while stress responses are often under the control of alternative sigma factors. Different sigma factors compete for binding to a limited pool of RNA polymerase (RNAP) core enzymes, providing a mechanism for cross talk between genes or gene classes via the sharing of expression machinery. To quantitatively analyze the contribution of sigma factor competition to global changes in gene expression, we develop a thermodynamic model that describes binding between sigma factors and core RNAP at equilibrium, transcription, non-specific binding to DNA and the modulation of the availability of the molecular components. Association of housekeeping sigma factor to RNAP is generally favored by its abundance and higher binding affinity to the core. In order to promote transcription by alternative sigma subunits, the bacterial cell modulates the transcriptional efficiency in a reversible manner through several strategies such as anti-sigma factors, 6S RNA and generally any kind of transcriptional regulators (e.g. activators or inhibitors). By shifting the outcome of sigma factor competition for the core, these modulators bias the transcriptional program of the cell. The model is validated by comparison with in vitro competition experiments, with which excellent agreement is found. We observe that transcription is affected via the modulation of the concentrations of the different types of holoenzymes, so saturated promoters are only weakly affected by sigma factor competition. However, in case of overlapping promoters or promoters recognized by two types of sigma factors, we find that even saturated promoters are strongly affected. Active transcription effectively lowers the affinity between the sigma factor driving it and the core RNAP, resulting in complex cross talk effects and raising the question of how their in vitro measure is relevant in the cell. We also estimate that sigma factor competition is not strongly affected by non-specific binding of core RNAPs, sigma factors, and holoenzymes to DNA. Finally, we analyze the role of increased core RNAP availability upon the shut-down of ribosomal RNA transcription during stringent response. We find that passive up-regulation of alternative sigma-dependent transcription is not only possible, but also displays hypersensitivity based on the sigma factor competition. Our theoretical analysis thus provides support for a significant role of passive control during that global switch of the gene expression program and gives new insights into RNAP partitioning in the cell.}, language = {en} } @phdthesis{Dreyer2005, author = {Dreyer, Ingo}, title = {Biophysikalische und molekulare Grundlagen der Regulation des Kaliumtransports in Pflanzen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7708}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Kaliumionen (K+) sind die am h{\"a}ufigsten vorkommenden anorganischen Kationen in Pflanzen. Gemessen am Trockengewicht kann ihr Anteil bis zu 10\% ausmachen. Kaliumionen {\"u}bernehmen wichtige Funktionen in verschiedenen Prozessen in der Pflanze. So sind sie z.B. essentiell f{\"u}r das Wachstum und f{\"u}r den Stoffwechsel. Viele wichtige Enzyme arbeiten optimal bei einer K+ Konzentration im Bereich von 100 mM. Aus diesem Grund halten Pflanzenzellen in ihren Kompartimenten, die am Stoffwechsel beteiligt sind, eine kontrollierte Kaliumkonzentration von etwa 100 mM aufrecht. Die Aufnahme von Kaliumionen aus dem Erdreich und deren Transport innerhalb der Pflanze und innerhalb einer Pflanzenzelle wird durch verschiedene Kaliumtransportproteine erm{\"o}glicht. Die Aufrechterhaltung einer stabilen K+ Konzentration ist jedoch nur m{\"o}glich, wenn die Aktivit{\"a}t dieser Transportproteine einer strikten Kontrolle unterliegt. Die Prozesse, die die Transportproteine regulieren, sind bis heute nur ansatzweise verstanden. Detailliertere Kenntnisse auf diesem Gebiet sind aber von zentraler Bedeutung f{\"u}r das Verst{\"a}ndnis der Integration der Transportproteine in das komplexe System des pflanzlichen Organismus. In dieser Habilitationsschrift werden eigene Publikationen zusammenfassend dargestellt, in denen die Untersuchungen verschiedener Regulationsmechanismen pflanzlicher Kaliumkan{\"a}le beschrieben werden. Diese Untersuchungen umfassen ein Spektrum aus verschiedenen proteinbiochemischen, biophysikalischen und pflanzenphysiologischen Analysen. Um die Regulationsmechanismen grundlegend zu verstehen, werden zum einen ihre strukturellen und molekularen Besonderheiten untersucht. Zum anderen werden die biophysikalischen und reaktionskinetischen Zusammenh{\"a}nge der Regulationsmechanismen analysiert. Die gewonnenen Erkenntnisse erlauben eine neue, detailliertere Interpretation der physiologischen Rolle der Kaliumtransportproteine in der Pflanze.}, subject = {Kaliumion}, language = {de} } @phdthesis{Schwarz2004, author = {Schwarz, Ulrich Sebastian}, title = {Forces and elasticity in cell adhesion}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001343}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Das Verhalten adh{\"a}renter Zellen h{\"a}ngt stark von den chemischen, topographischen und mechanischen Eigenschaften ihrer Umgebung ab. Experimentelle Untersuchungen der letzten Jahre haben gezeigt, dass adh{\"a}rente Zellen aktiv die elastischen Eigenschaften ihrer Umgebung erkunden, indem sie an dieser ziehen. Der resultierende Kraftaufbau h{\"a}ngt von den elastischen Eigenschaften der Umgebung ab und wird an den Adh{\"a}sionskontakten in entsprechende biochemische Signale umgewandelt, die zellul{\"a}re Programme wie Wachstum, Differenzierung, programmierten Zelltod und Zellbewegung mitbestimmen. Im Allgemeinen sind Kr{\"a}fte wichtige Einflussgr{\"o}ßen in biologischen Systemen. Weitere Beispiele daf{\"u}r sind H{\"o}r- und Tastsinn, Wundheilung sowie die rollende Adh{\"a}sion von weißen Blutk{\"o}rperchen auf den W{\"a}nden der Blutgef{\"a}ße. In der Habilitationsschrift von Ulrich Schwarz werden mehrere theoretische Projekte vorgestellt, die die Rolle von Kr{\"a}ften und Elastizit{\"a}t in der Zelladh{\"a}sion untersuchen. (1) Es wurde eine neue Methode entwickelt, um die Kr{\"a}fte auszurechnen, die Zellen an den Kontaktpunkten auf mikro-strukturierte elastische Substrate aus{\"u}ben. Das Hauptergebnis ist, dass Zell-Matrix-Kontakte als Mechanosensoren funktionieren, an denen interne Kr{\"a}fte in Proteinaggregation umgewandelt werden. (2) Eine Ein-Schritt-Master-Gleichung, die die stochastische Dynamik von Adh{\"a}sionsclustern als Funktion von Clustergr{\"o}ße, R{\"u}ckbindungsrate und Kraft beschreibt, wurde sowohl analytisch als auch numerisch gel{\"o}st. Zudem wurde dieses Modell auf Zell-Matrix-Kontakte, dynamische Kraftspektroskopie sowie die rollende Adh{\"a}sion angewandt. (3) Im Rahmen der linearen Elastizit{\"a}tstheorie und mit Hilfe des Konzepts der Kraftdipole wurde ein Modell formuliert und gel{\"o}st, das die Positionierung und Orientierung von Zellen in weicher Umgebung vorhersagt. Diese Vorhersagen sind in guter {\"U}bereinstimmung mit zahlreichen experimentellen Beobachtungen f{\"u}r Fibroblasten auf elastischen Substraten und in Kollagen-Gelen.}, language = {en} }