@phdthesis{LauerDuenkelberg2023, author = {Lauer-D{\"u}nkelberg, Gregor}, title = {Extensional deformation and landscape evolution of the Central Andean Plateau}, doi = {10.25932/publishup-61759}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617593}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 195}, year = {2023}, abstract = {Mountain ranges can fundamentally influence the physical and and chemical processes that shape Earths' surface. With elevations of up to several kilometers they create climatic enclaves by interacting with atmospheric circulation and hydrologic systems, thus leading to a specific distribution of flora and fauna. As a result, the interiors of many Cenozoic mountain ranges are characterized by an arid climate, internally drained and sediment-filled basins, as well as unique ecosystems that are isolated from the adjacent humid, low-elevation regions along their flanks and forelands. These high-altitude interiors of orogens are often characterized by low relief and coalesced sedimentary basins, commonly referred to as plateaus, tectono-geomorphic entities that result from the complex interactions between mantle-driven geological and tectonic conditions and superposed atmospheric and hydrological processes. The efficiency of these processes and the fate of orogenic plateaus is therefore closely tied to the balance of constructive and destructive processes - tectonic uplift and erosion, respectively. In numerous geological studies it has been shown that mountain ranges are delicate systems that can be obliterated by an imbalance of these underlying forces. As such, Cenozoic mountain ranges might not persist on long geological timescales and will be destroyed by erosion or tectonic collapse. Advancing headward erosion of river systems that drain the flanks of the orogen may ultimately sever the internal drainage conditions and the maintenance of storage of sediments within the plateau, leading to destruction of plateau morphology and connectivity with the foreland. Orogenic collapse may be associated with the changeover from a compressional stress field with regional shortening and topographic growth, to a tensional stress field with regional extensional deformation and ensuing incision of the plateau. While the latter case is well-expressed by active extensional faults in the interior parts of the Tibetan Plateau and the Himalaya, for example, the former has been attributed to have breached the internally drained areas of the high-elevation sectors of the Iranian Plateau. In the case of the Andes of South America and their internally drained Altiplano-Puna Plateau, signs of both processes have been previously described. However, in the orogenic collapse scenario the nature of the extensional structures had been primarily investigated in the northern and southern terminations of the plateau; in some cases, the extensional faults were even regarded to be inactive. After a shallow earthquake in 2020 within the Eastern Cordillera of Argentina that was associated with extensional deformation, the state of active deformation and the character of the stress field in the central parts of the plateau received renewed interest to explain a series of extensional structures in the northernmost sectors of the plateau in north-western Argentina. This study addresses (1) the issue of tectonic orogenic collapse of the Andes and the destruction of plateau morphology by studying the fill and erosion history of the central eastern Andean Plateau using sedimentological and geochronological data and (2) the kinematics, timing and magnitude of extensional structures that form well-expressed fault scarps in sediments of the regional San Juan del Oro surface, which is an integral part of the Andean Plateau and adjacent morphotectonic provinces to the east. Importantly, sediment properties and depositional ages document that the San Juan del Oro Surface was not part of the internally-drained Andean Plateau, but rather associated with a foreland-directed drainage system, which was modified by the Andean orogeny and that became successively incorporated into the orogen by the eastward-migration of the Andean deformation front during late Miocene - Pliocene time. Structural and geomorphic observations within the plateau indicate that extensional processes must have been repeatedly active between the late Miocene and Holocene supporting the notion of plateau-wide extensional processes, potentially associated with Mw ~ 7 earthquakes. The close relationship between extensional joints and fault orientations underscores that 3 was oriented horizontally in NW-SE direction and 1 was vertical. This unambiguously documents that the observed deformation is related to gravitational forces that drive the orogenic collapse of the plateau. Applied geochronological analyses suggest that normal faulting in the northern Puna was active at about 3 Ma, based on paired cosmogenic nuclide dating of sediment fill units. Possibly due to regional normal faulting the drainage system within the plateau was modified, promoting fluvial incision.}, language = {en} } @phdthesis{Patyniak2022, author = {Patyniak, Magda}, title = {Seismotectonic segmentation, paleoearthquakes and style of deformation along the Northern Pamir thrust system, South Kyrgyzstan}, doi = {10.25932/publishup-57714}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577141}, school = {Universit{\"a}t Potsdam}, pages = {xxii, 165}, year = {2022}, abstract = {The Pamir Frontal Thrust (PFT) located in the Trans Alai range in Central Asia is the principal active fault of the intracontinental India-Eurasia convergence zone and constitutes the northernmost boundary of the Pamir orogen at the NW edge of this collision zone. Frequent seismic activity and ongoing crustal shortening reflect the northward propagation of the Pamir into the intermontane Alai Valley. Quaternary deposits are being deformed and uplifted by the advancing thrust front of the Trans Alai range. The Alai Valley separates the Pamir range front from the Tien Shan mountains in the north; the Alai Valley is the vestige of a formerly contiguous basin that linked the Tadjik Depression in the west with the Tarim Basin in the east. GNSS measurements across the Central Pamir document a shortening rate of ~25 mm/yr, with a dramatic decrease of ~10-15 mm over a short distance across the northernmost Trans Alai range. This suggests that almost half of the shortening in the greater Pamir - Tien Shan collision zone is absorbed along the PFT. The short-term (geodetic) and long-term (geologic) shortening rates across the northern Pamir appear to be at odds with an apparent slip-rate discrepancy along the frontal fault system of the Pamir. Moreover, the present-day seismicity and historical records have not revealed great Mw > 7 earthquakes that might be expected with such a significant slip accommodation. In contrast, recent and historic earthquakes exhibit complex rupture patterns within and across seismotectonic segments bounding the Pamir mountain front, challenging our understanding of fault interaction and the seismogenic potential of this area, and leaving the relationships between seismicity and the geometry of the thrust front not well understood. In this dissertation I employ different approaches to assess the seismogenic behavior along the PFT. Firstly, I provide paleoseismic data from five trenches across the central PFT segment (cPFT) and compute a segment-wide earthquake chronology over the past 16 kyr. This novel dataset provides important insights into the recurrence, magnitude, and rupture extent of past earthquakes along the cPFT. I interpret five, possibly six paleoearthquakes that have ruptured the Pamir mountain front since ∼7 ka and 16 ka, respectively. My results indicate that at least three major earthquakes ruptured the full-segment length and possibly crossed segment boundaries with a recurrence interval of ∼1.9 kyr and potential magnitudes of up to Mw 7.4. Importantly, I did not find evidence for great (i.e., Mw ≥8) earthquakes. Secondly, I combine my paleoseimic results with morphometric analyses to establish a segment-wide distribution of the cumulative vertical separation along offset fluvial terraces and I model a long-term slip rate for the cPFT. My investigations reveal discrepancies between the extents of slip and rupture during apparent partial segment ruptures in the western half of the cPFT. Combined with significantly higher fault scarp offsets in this sector of the cPFT, the observations indicate a more mature fault section with a potential for future fault linkage. I estimate an average rate of horizontal motion for the cPFT of 4.1 ± 1.5 mm/yr during the past ∼5 kyr, which does not fully match the GNSS-derived present-day shortening rate of ∼10 mm/yr. This suggests a complex distribution of strain accumulation and potential slip partitioning between the cPFT and additional faults and folds within the Pamir that may be associated with a partially locked regional d{\´e}collement. The third part of the thesis provides new insights regarding the surface rupture of the 2008 Mw 6.6 Nura earthquake that ruptured along the eastern PFT sector. I explore this rupture in the context of its structural complexity by combining extensive field observations with high-resolution digital surface models. I provide a map of the rupture extent, net slip measurements, and updated regional geological observations. Based on this data I propose a tectonic model in this area associated with secondary flexural-slip faulting along steeply dipping bedding of folded Paleogene sedimentary strata that is related to deformation along a deeper blind thrust. Here, the strain release seems to be transferred from the PFT towards older inherited basement structures within the area of advanced Pamir-Tien Shan collision zone. The extensive research of my dissertation results in a paleoseismic database of the past 16 ~kyr, which contributes to the understanding of the seismogenic behavior of the PFT, but also to that of segmented thrust-fault systems in active collisional settings. My observations underscore the importance of combining different methodological approaches in the geosciences, especially in structurally complex tectonic settings like the northern Pamir. Discrepancy between GNSS-derived present-day deformation rates and those from different geological archives in the central part, as well as the widespread distribution of the deformation due to earthquake triggered strain transfer in the eastern part reveals the complexity of this collision zone and calls for future studies involving multi-temporal and interdisciplinary approaches.}, language = {en} }