@phdthesis{Graeff2011, author = {Gr{\"a}ff, Thomas}, title = {Soil moisture dynamics and soil moisture controlled runoff processes at different spatial scales : from observation to modelling}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54470}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Soil moisture is a key state variable that controls runoff formation, infiltration and partitioning of radiation into latent and sensible heat. However, the experimental characterisation of near surface soil moisture patterns and their controls on runoff formation remains a challenge. This subject was one aspect of the BMBF-funded OPAQUE project (operational discharge and flooding predictions in head catchments). As part of that project the focus of this dissertation is on: (1) testing the methodology and feasibility of the Spatial TDR technology in producing soil moisture profiles along TDR probes, including an inversion technique of the recorded signal in heterogeneous field soils, (2) the analysis of spatial variability and temporal dynamics of soil moisture at the field scale including field experiments and hydrological modelling, (3) the application of models of different complexity for understanding soil moisture dynamics and its importance for runoff generation as well as for improving the prediction of runoff volumes. To fulfil objective 1, several laboratory experiments were conducted to understand the influence of probe rod geometry and heterogeneities in the sampling volume under different wetness conditions. This includes a detailed analysis on how these error sources affect retrieval of soil moisture profiles in soils. Concerning objective 2 a sampling strategy of two TDR clusters installed in the head water of the Wilde Weißeritz catchment (Eastern Ore Mountains, Germany) was used to investigate how well "the catchment state" can be characterised by means of distributed soil moisture data observed at the field scale. A grassland site and a forested site both located on gentle slopes were instrumented with two Spatial TDR clusters that consist of up to 39 TDR probes. Process understanding was gained by modelling the interaction of evapotranspiration and soil moisture with the hydrological process model CATFLOW. A field scale irrigation experiment was carried out to investigate near subsurface processes at the hillslope scale. The interactions of soil moisture and runoff formation were analysed using discharge data from three nested catchments: the Becherbach with a size of 2 km², the Rehefeld catchment (17 km²) and the superordinate Ammelsdorf catchment (49 km²). Statistical analyses including observations of pre-event runoff, soil moisture and different rainfall characteristics were employed to predict stream flow volume. On the different scales a strong correlation between the average soil moisture and the runoff coefficients of rainfall-runoff events could be found, which almost explains equivalent variability as the pre-event runoff. Furthermore, there was a strong correlation between surface soil moisture and subsurface wetness with a hysteretic behaviour between runoff soil moisture. To fulfil objective 3 these findings were used in a generalised linear model (GLM) analysis which combines state variables describing the catchments antecedent wetness and variables describing the meteorological forcing in order to predict event runoff coefficients. GLM results were compared to simulations with the catchment model WaSiM ETH. Hereby were the model results of the GLMs always better than the simulations with WaSiM ETH. The GLM analysis indicated that the proposed sampling strategy of clustering TDR probes in typical functional units is a promising technique to explore soil moisture controls on runoff generation and can be an important link between the scales. Long term monitoring of such sites could yield valuable information for flood warning and forecasting by identifying critical soil moisture conditions for the former and providing a better representation of the initial moisture conditions for the latter.}, language = {en} } @phdthesis{Hattermann2005, author = {Hattermann, Fred Fokko}, title = {Integrated modelling of Global Change impacts in the German Elbe River Basin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6052}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {The scope of this study is to investigate the environmental change in the German part of the Elbe river basin, whereby the focus is on two water related problems: having too little water and having water of poor quality. The Elbe region is representative of humid to semi-humid landscapes in central Europe, where water availability during the summer season is the limiting factor for plant growth and crop yields, especially in the loess areas, where the annual precipitation is lower than 500 mm. It is most likely that water quantity problems will accelerate in future, because both the observed and the projected climate trend show an increase in temperature and a decrease in annual precipitation, especially in the summer. Another problem is nutrient pollution of rivers and lakes. In the early 1990s, the Elbe was one of the most heavily polluted rivers in Europe. Even though nutrient emissions from point sources have notably decreased in the basin due to reduction of industrial sources and introduction of new and improved sewage treatment facilities, the diffuse sources of pollution are still not sufficiently controlled. The investigations have been done using the eco-hydrological model SWIM (Soil and Water Integrated Model), which has been embedded in a model framework of climate and agro-economic models. A global scenario of climate and agro-economic change has been regionalized to generate transient climate forcing data and land use boundary conditions for the model. The model was used to transform the climate and land use changes into altered evapotranspiration, groundwater recharge, crop yields and river discharge, and to investigate the development of water quality in the river basin. Particular emphasis was given to assessing the significance of the impacts on the hydrology, taking into account in the analysis the inherent uncertainty of the regional climate change as well as the uncertainty in the results of the model. The average trend of the regional climate change scenario indicates a decrease in mean annual precipitation up to 2055 of about 1.5 \%, but with high uncertainty (covering the range from -15.3 \% to +14.8 \%), and a less uncertain increase in temperature of approximately 1.4 K. The relatively small change in precipitation in conjunction with the change in temperature leads to severe impacts on groundwater recharge and river flow. Increasing temperature induces longer vegetation periods, and the seasonality of the flow regime changes towards longer low flow spells in summer. As a results the water availability will decrease on average of the scenario simulations by approximately 15 \%. The increase in temperatures will improve the growth conditions for temperature limited crops like maize. The uncertainty of the climate trend is particularly high in regions where the change is the highest. The simulation results for the Nuthe subbasin of the Elbe indicate that retention processes in groundwater, wetlands and riparian zones have a high potential to reduce the nitrate concentrations of rivers and lakes in the basin, because they are located at the interface between catchment area and surface water bodies, where they are controlling the diffuse nutrient inputs. The relatively high retention of nitrate in the Nuthe basin is due to the long residence time of water in the subsurface (about 40 years), with good conditions for denitrification, and due to nitrate retention and plant uptake in wetlands and riparian zones. The concluding result of the study is that the natural environment and communities in parts of Central Europe will have considerably lower water resources under scenario conditions. The water quality will improve, but due to the long residence time of water and nutrients in the subsurface, this improvement will be slower in areas where the conditions for nutrient turn-over in the subsurface are poor.}, subject = {Hydrologie}, language = {en} } @phdthesis{Wriedt2004, author = {Wriedt, Gunter}, title = {Modelling of nitrogen transport and turnover during soil and groundwater passage in a small lowland catchment of Northern Germany}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001307}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Stoffumsatzreaktionen und hydraulische Prozesse im Boden und Grundwasser k{\"o}nnen in Tieflandeinzugsgebieten zu einer Nitratretention f{\"u}hren. Die Untersuchung dieser Prozesse in Raum und Zeit kann mit Hilfe geeigneter Modelle erfolgen. Ziele dieser Arbeit sind: i) die Entwicklung eines geeigneten Modellansatzes durch Kombination von Teilmodellen zur Simulation des N-Transportes im Boden und Grundwasser von Tieflandeinzugsgebieten und ii) die Untersuchung von Wechselwirkungen zwischen Gebietseigenschaften und N-Transport unter besonderer Ber{\"u}cksichtigung der potentiellen N-Zufuhr in die Oberfl{\"a}chengew{\"a}sser. Der Modellansatz basiert auf der Kombination verschiedener Teilmodelle: das Bodenwasser- und -stickstoffmodell mRISK-N, das Grundwassermodell MODFLOW und das Stofftransportmodell RT3D. Zur Untersuchung der Wechselwirkungen mit den Gebietseigenschaften muss die Verteilung und Verf{\"u}gbarkeit von Reaktionspartnern ber{\"u}cksichtigt werden. Dazu wurde ein Reaktionsmodul entwickelt, welches chemische Prozesse im Grundwasser simuliert. Hierzu geh{\"o}ren die Mineralisation organischer Substanz durch Sauerstoff, Nitrat und Sulfat sowie die Pyritoxidation durch Sauerstoff und Nitrat. Der Modellansatz wurde in verschiedenen Einzelstudien angewandt, wobei jeweils bestimmte Teilmodelle im Vordergrund stehen. Alle Modellstudien basieren auf Daten aus dem Schaugrabeneinzugsgebiet (ca. 25 km\&\#178;), in der N{\"a}he von Osterburg(Altmark) im Norden Sachsen-Anhalts. Die folgenden Einzelstudien wurden durchgef{\"u}hrt: i) Evaluation des Bodenmodells anhand von Lysimeterdaten, ii) Modellierung eines Tracerexperimentes im Feldmaßstab als eine erste Anwendung des Reaktionsmoduls, iii) Untersuchung hydraulisch-chemischer Wechselwirkungen an einem 2D-Grundwassertransekt, iv) Fl{\"a}chenverteilte Modellierung von Grundwasserneubildung und Bodenstickstoffaustrag im Untersuchungsgebiet als Eingangsdaten f{\"u}r nachfolgende Grundwassersimulationen, und v) Untersuchung der Ausbreitung von Nitrat im Grundwasser und des Durchbruchs in die Oberfl{\"a}chengew{\"a}sser im Untersuchungsgebiet auf Basis einer 3D-Modellierung von Grundwasserstr{\"o}mung und reaktivem Stofftransport. Die Modellstudien zeigen, dass der Modellansatz geeignet ist, die Wechselwirkungen zwischen Stofftransport und \–umsatz und den hydraulisch-chemischen Gebietseigenschaften zu modellieren. Die Ausbreitung von Nitrat im Sediment wird wesentlich von der Verf{\"u}gbarkeit reaktiver Substanzen sowie der Verweilzeit im Grundwasserleiter bestimmt. Bei der Simulation des Untersuchungsgebietes wurde erst nach 70 Jahren eine der gegebenen Eintragssitutation entsprechende Nitratkonzentration im Grundwasserzustrom zum Grabensystem erreicht (konservativer Transport). Die Ber{\"u}cksichtigung von reaktivem Stofftransport f{\"u}hrt zu einer deutlichen Reduktion der Nitratkonzentrationen. Die Modellergebnisse zeigen, dass der Grundwasserzustrom die beobachtete Nitratbelastung im Grabensystem nicht erkl{\"a}ren kann, da der Großteil des Nitrates durch Denitrifikation verloren geht. Andere Quellen, wie direkte Eintr{\"a}ge oder Dr{\"a}nagenzufl{\"u}sse m{\"u}ssen ebenfalls in Betracht gezogen werden. Die Prognosef{\"a}higkeit des Modells f{\"u}r das Untersuchungsgebiet wird durch die Datenunsicherheiten und die Sch{\"a}tzung der Modellparameter eingeschr{\"a}nkt. Dennoch ist der Modellansatz eine wertvolle Hilfe bei der Identifizierung von belastungsrelevanten Teilfl{\"a}chen (Stoffquellen und -senken) sowie bei der Modellierung der Auswirkungen von Managementmaßnahmen oder Landnutzungsver{\"a}nderungen auf Grundlage von Szenario-Simulationen. Der Modellansatz unterst{\"u}tzt auch die Interpretation von Beobachtungsdaten, da so die lokalen Informationen in einen r{\"a}umlichen und zeitlichen Zusammenhang gestellt werden k{\"o}nnen.}, language = {en} }