@article{BoersBookhagenMarwanetal.2016, author = {Boers, Niklas and Bookhagen, Bodo and Marwan, Norbert and Kurths, J{\"u}rgen}, title = {Spatiotemporal characteristics and synchronization of extreme rainfall in South America with focus on the Andes Mountain range}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {46}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-015-2601-6}, pages = {601 -- 617}, year = {2016}, abstract = {The South American Andes are frequently exposed to intense rainfall events with varying moisture sources and precipitation-forming processes. In this study, we assess the spatiotemporal characteristics and geographical origins of rainfall over the South American continent. Using high-spatiotemporal resolution satellite data (TRMM 3B42 V7), we define four different types of rainfall events based on their (1) high magnitude, (2) long temporal extent, (3) large spatial extent, and (4) high magnitude, long temporal and large spatial extent combined. In a first step, we analyze the spatiotemporal characteristics of these events over the entire South American continent and integrate their impact for the main Andean hydrologic catchments. Our results indicate that events of type 1 make the overall highest contributions to total seasonal rainfall (up to 50\%). However, each consecutive episode of the infrequent events of type 4 still accounts for up to 20\% of total seasonal rainfall in the subtropical Argentinean plains. In a second step, we employ complex network theory to unravel possibly non-linear and long-ranged climatic linkages for these four event types on the high-elevation Altiplano-Puna Plateau as well as in the main river catchments along the foothills of the Andes. Our results suggest that one to two particularly large squall lines per season, originating from northern Brazil, indirectly trigger large, long-lasting thunderstorms on the Altiplano Plateau. In general, we observe that extreme rainfall in the catchments north of approximately 20 degrees S typically originates from the Amazon Basin, while extreme rainfall at the eastern Andean foothills south of 20 degrees S and the Puna Plateau originates from southeastern South America.}, language = {en} } @article{KuznetsovTurukinaChernyshovetal.2016, author = {Kuznetsov, Alexander P. and Turukina, Ludmila V. and Chernyshov, Nikolai Yu and Sedova, Yuliya V.}, title = {Oscillations and Synchronization in a System of Three Reactively Coupled Oscillators}, series = {International journal of bifurcation and chaos : in applied sciences and engineering}, volume = {26}, journal = {International journal of bifurcation and chaos : in applied sciences and engineering}, publisher = {World Scientific}, address = {Singapore}, issn = {0218-1274}, doi = {10.1142/S0218127416500103}, pages = {31 -- 39}, year = {2016}, abstract = {We consider a system of three interacting van der Pol oscillators with reactive coupling. Phase equations are derived, using proper order of expansion over the coupling parameter. The dynamics of the system is studied by means of the bifurcation analysis and with the method of Lyapunov exponent charts. Essential and physically meaningful features of the reactive coupling are discussed.}, language = {en} } @article{NagornovOsipoyKomarovetal.2016, author = {Nagornov, Roman and Osipoy, Grigory and Komarov, Maxim and Pikovskij, Arkadij and Shilnikov, Andrey}, title = {Mixed-mode synchronization between two inhibitory neurons with post-inhibitory rebound}, series = {Communications in nonlinear science \& numerical simulation}, volume = {36}, journal = {Communications in nonlinear science \& numerical simulation}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1007-5704}, doi = {10.1016/j.cnsns.2015.11.024}, pages = {175 -- 191}, year = {2016}, abstract = {We study an array of activity rhythms generated by a half-center oscillator (HCO), represented by a pair of reciprocally coupled neurons with post-inhibitory rebounds (PIR). Such coupling induced bursting possesses two time scales, one for fast spiking and another for slow quiescent periods, is shown to exhibit an array of synchronization properties. We discuss several HCO configurations constituted by two endogenous bursters, by tonic-spiking and quiescent neurons, as well as mixed-mode configurations composed of neurons of different type. We demonstrate that burst synchronization can be accompanied by complex, often chaotic, interactions of fast spikes within synchronized bursts. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} }