@article{JayEckertMitzneretal.2020, author = {Jay, Raphael M. and Eckert, Sebastian and Mitzner, Rolf and Fondell, Mattis and F{\"o}hlisch, Alexander}, title = {Quantitative evaluation of transient valence orbital occupations in a 3d transition metal complex as seen from the metal and ligand perspective}, series = {Chemical physics letters}, volume = {754}, journal = {Chemical physics letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2614}, doi = {10.1016/j.cplett.2020.137681}, pages = {5}, year = {2020}, abstract = {It is demonstrated for the case of photo-excited ferrocyanide how time-resolved soft X-ray absorption spectroscopy in transmission geometry at the ligand K-edge and metal L-3-edge provides quantitatively equivalent valence electronic structure information, where signatures of photo-oxidation are assessed locally at the metal as well as the ligand. This allows for a direct and independent quantification of the number of photo-oxidized molecules at two soft X-ray absorption edges highlighting the sensitivity of X-ray absorption spectroscopy to the valence orbital occupation of 3d transition metal complexes throughout the soft X-ray range.}, language = {en} } @article{KotthoffO'CallaghanLisecetal.2020, author = {Kotthoff, Lisa and O'Callaghan, Sarah-Louise and Lisec, Jan and Schwerdtle, Tanja and Koch, Matthias}, title = {Structural annotation of electro- and photochemically generated transformation products of moxidectin using high-resolution mass spectrometry}, series = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica}, volume = {412}, journal = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica}, number = {13}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-020-02572-1}, pages = {3141 -- 3152}, year = {2020}, abstract = {Moxidectin (MOX) is a widely used anthelmintic drug for the treatment of internal and external parasites in food-producing and companion animals. Transformation products (TPs) of MOX, formed through metabolic degradation or acid hydrolysis, may pose a potential environmental risk, but only few were identified so far. In this study, we therefore systematically characterized electro- and photochemically generated MOX TPs using high-resolution mass spectrometry (HRMS). Oxidative electrochemical (EC) TPs were generated in an electrochemical reactor and photochemical (PC) TPs by irradiation with UV-C light. Subsequent HRMS measurements were performed to identify accurate masses and deduce occurring modification reactions of derived TPs in a suspected target analysis. In total, 26 EC TPs and 59 PC TPs were found. The main modification reactions were hydroxylation, (de-)hydration, and derivative formation with methanol for EC experiments and isomeric changes, (de-)hydration, and changes at the methoxime moiety for PC experiments. In addition, several combinations of different modification reactions were identified. For 17 TPs, we could predict chemical structures through interpretation of acquired MS/MS data. Most modifications could be linked to two specific regions of MOX. Some previously described metabolic reactions like hydroxylation or O-demethylation were confirmed in our EC and PC experiments as reaction type, but the corresponding TPs were not identical to known metabolites or degradation products. The obtained knowledge regarding novel TPs and reactions will aid to elucidate the degradation pathway of MOX which is currently unknown.}, language = {en} } @article{PruefertUrbanFischeretal.2020, author = {Pr{\"u}fert, Chris and Urban, Raphael David and Fischer, Tillmann Georg and Villatoro, Jos{\´e} Andr{\´e}s and Riebe, Daniel and Beitz, Toralf and Belder, Detlev and Zeitler, Kirsten and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {In situ monitoring of photocatalyzed isomerization reactions on a microchip flow reactor by IR-MALDI ion mobility spectrometry}, series = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica}, volume = {412}, journal = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica}, number = {28}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-020-02923-y}, pages = {7899 -- 7911}, year = {2020}, abstract = {The visible-light photocatalyticE/Zisomerization of olefins can be mediated by a wide spectrum of triplet sensitizers (photocatalysts). However, the search for the most efficient photocatalysts through screenings in photo batch reactors is material and time consuming. Capillary and microchip flow reactors can accelerate this screening process. Combined with a fast analytical technique for isomer differentiation, these reactors can enable high-throughput analyses. Ion mobility (IM) spectrometry is a cost-effective technique that allows simple isomer separation and detection on the millisecond timescale. This work introduces a hyphenation method consisting of a microchip reactor and an infrared matrix-assisted laser desorption ionization (IR-MALDI) ion mobility spectrometer that has the potential for high-throughput analysis. The photocatalyzedE/Zisomerization of ethyl-3-(pyridine-3-yl)but-2-enoate (E-1) as a model substrate was chosen to demonstrate the capability of this device. Classic organic triplet sensitizers as well as Ru-, Ir-, and Cu-based complexes were tested as catalysts. The ionization efficiency of theZ-isomer is much higher at atmospheric pressure which is due to a higher proton affinity. In order to suppress proton transfer reactions by limiting the number of collisions, an IM spectrometer working at reduced pressure (max. 100 mbar) was employed. This design reduced charge transfer reactions and allowed the quantitative determination of the reaction yield in real time. Among 14 catalysts tested, four catalysts could be determined as efficient sensitizers for theE/Zisomerization of ethyl cinnamate derivativeE-1. Conversion rates of up to 80\% were achieved in irradiation time sequences of 10 up to 180 s. With respect to current studies found in the literature, this reduces the acquisition times from several hours to only a few minutes per scan.}, language = {en} }