@article{NowotnyCastroHugoetal.2018, author = {Nowotny, Kerstin and Castro, Jose Pedro and Hugo, Martin and Braune, Sabine and Weber, Daniela and Pignitter, Marc and Somoza, Veronika and Bornhorst, Julia and Schwerdtle, Tanja and Grune, Tilman}, title = {Oxidants produced by methylglyoxal-modified collagen trigger ER stress and apoptosis in skin fibroblasts}, series = {Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research}, volume = {120}, journal = {Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research}, publisher = {Elsevier}, address = {New York}, issn = {0891-5849}, doi = {10.1016/j.freeradbiomed.2018.03.022}, pages = {102 -- 113}, year = {2018}, abstract = {Methylglyoxal (MG), a highly reactive dicarbonyl, interacts with proteins to form advanced glycation end products (AGEs). AGEs include a variety of compounds which were shown to have damaging potential and to accumulate in the course of different conditions such as diabetes mellitus and aging. After confirming collagen as a main target for MG modifications in vivo within the extracellular matrix, we show here that MG-collagen disrupts fibroblast redox homeostasis and induces endoplasmic reticulum (ER) stress and apoptosis. In particular, MG-collagen-induced apoptosis is associated with the activation of the PERK-eIF2 alpha pathway and caspase-12. MG-collagen contributes to altered redox homeostasis by directly generating hydrogen peroxide and oxygen-derived free radicals. The induction of ER stress in human fibroblasts was confirmed using collagen extracts isolated from old mice in which MG-derived AGEs were enriched. In conclusion, MG-derived AGEs represent one factor contributing to diminished fibroblast function during aging.}, language = {en} } @article{HortobagyiUematsuSandersetal.2018, author = {Hortobagyi, Tibor and Uematsu, Azusa and Sanders, Lianne and Kliegl, Reinhold and Tollar, Jozsef and Moraes, Renato and Granacher, Urs}, title = {Beam Walking to Assess Dynamic Balance in Health and Disease}, series = {Gerontology}, volume = {65}, journal = {Gerontology}, number = {4}, publisher = {Karger}, address = {Basel}, issn = {0304-324X}, doi = {10.1159/000493360}, pages = {332 -- 339}, year = {2018}, abstract = {Background: Dynamic balance keeps the vertical projection of the center of mass within the base of support while walking. Dynamic balance tests are used to predict the risks of falls and eventual falls. The psychometric properties of most dynamic balance tests are unsatisfactory and do not comprise an actual loss of balance while walking. Objectives: Using beam walking distance as a measure of dynamic balance, the BEAM consortium will determine the psychometric properties, lifespan and patient reference values, the relationship with selected "dynamic balance tests," and the accuracy of beam walking distance to predict falls. Methods: This cross-sectional observational study will examine healthy adults in 7 decades (n = 432) at 4 centers. Center 5 will examine patients (n = 100) diagnosed with Parkinson's disease, multiple sclerosis, stroke, and balance disorders. In test 1, all participants will be measured for demographics, medical history, muscle strength, gait, static balance, dynamic balance using beam walking under single (beam walking only) and dual task conditions (beam walking while concurrently performing an arithmetic task), and several cognitive functions. Patients and healthy participants age 50 years or older will be additionally measured for fear of falling, history of falls, miniBESTest, functional reach on a force platform, timed up and go, and reactive balance. All participants age 50 years or older will be recalled to report fear of falling and fall history 6 and 12 months after test 1. In test 2, seven to ten days after test 1, healthy young adults and age 50 years or older (n = 40) will be retested for reliability of beam walking performance. Conclusion: We expect to find that beam walking performance vis-{\`a}-vis the traditionally used balance outcomes predicts more accurately fall risks and falls. Clinical Trial Registration Number: NCT03532984.}, language = {en} } @article{FernandoDrescherNowotnyetal.2018, author = {Fernando, Raquel and Drescher, Cathleen and Nowotny, Kerstin and Grune, Tilman and Castro, Jose Pedro}, title = {Impaired proteostasis during skeletal muscle aging}, series = {Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research}, volume = {132}, journal = {Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research}, publisher = {Elsevier}, address = {New York}, issn = {0891-5849}, doi = {10.1016/j.freeradbiomed.2018.08.037}, pages = {58 -- 66}, year = {2018}, abstract = {Aging is a complex phenomenon that has detrimental effects on tissue homeostasis. The skeletal muscle is one of the earliest tissues to be affected and to manifest age-related changes such as functional impairment and the loss of mass. Common to these alterations and to most of tissues during aging is the disruption of the proteostasis network by detrimental changes in the ubiquitin-proteasomal system (UPS) and the autophagy-lysosomal system (ALS). In fact, during aging the accumulation of protein aggregates, a process mainly driven by increased levels of oxidative stress, has been observed, clearly demonstrating UPS and ALS dysregulation. Since the UPS and ALS are the two most important pathways for the removal of misfolded and aggregated proteins and also of damaged organelles, we provide here an overview on the current knowledge regarding the connection between the loss of proteostasis and skeletal muscle functional impairment and also how redox regulation can play a role during aging. Therefore, this review serves for a better understanding of skeletal muscle aging in regard to the loss of proteostasis and how redox regulation can impact its function and maintenance.}, language = {en} } @article{FernandoDrescherDeubeletal.2018, author = {Fernando, Raquel and Drescher, Cathleen and Deubel, Stefanie and Jung, Tobias and Ost, Mario and Klaus, Susanne and Grune, Tilman and Castro, Jose Pedro}, title = {Low proteasomal activity in fast skeletal muscle fibers is not associated with increased age-related oxidative damage}, series = {Experimental gerontology}, volume = {117}, journal = {Experimental gerontology}, publisher = {Elsevier}, address = {Oxford}, issn = {0531-5565}, doi = {10.1016/j.exger.2018.10.018}, pages = {45 -- 52}, year = {2018}, abstract = {The skeletal muscle is a crucial tissue for maintaining whole body homeostasis. Aging seems to have a disruptive effect on skeletal muscle homeostasis including proteostasis. However, how aging specifically impacts slow and fast twitch fiber types remains elusive. Muscle proteostasis is largely maintained by the proteasomal system. Here we characterized the proteasomal system in two different fiber types, using a non-sarcopenic aging model. By analyzing the proteasomal activity and amount, as well as the polyubiquitinated proteins and the level of protein oxidation in Musculus soleus (Sol) and Musculus extensor digitorum longus (EDL), we found that the slow twitch Sol muscle shows an overall higher respiratory and proteasomal activity in young and old animals. However, especially during aging the fast twitch EDL muscle reduces protein oxidation by an increase of antioxidant capacity. Thus, under adaptive non-sarcopenic conditions, the two fibers types seem to have different strategies to avoid age-related changes.}, language = {en} } @article{FranzOstOttenetal.2018, author = {Franz, Kristina and Ost, Mario and Otten, Lindsey and Herpich, Catrin and Coleman, Verena and Endres, Anne-Sophie and Klaus, Susanne and M{\"u}ller-Werdan, Ursula and Norman, Kristina}, title = {Higher serum levels of fibroblast growth factor 21 in old patients with cachexia}, series = {Nutrition : the international journal of applied and basic nutritional sciences}, volume = {63-64}, journal = {Nutrition : the international journal of applied and basic nutritional sciences}, publisher = {Elsevier}, address = {New York}, issn = {0899-9007}, doi = {10.1016/j.nut.2018.11.004}, pages = {81 -- 86}, year = {2018}, abstract = {Objective: Fibroblast growth factor (FGF)21 is promptly induced by short fasting in animal models to regulate glucose and fat metabolism. Data on FGF21 in humans are inconsistent and FGF21 has not yet been investigated in old patients with cachexia, a complex syndrome characterized by inflammation and weight loss. The aim of this study was to explore the association of FGF21 with cachexia in old patients compared with their healthy counterparts. Methods: Serum FGF21 and its inactivating enzyme fibroblast activation protein (FAP)-cc were measured with enzyme-linked immunoassays. Cachexia was defined as >= 5\% weight loss in the previous 3 mo and concurrent anorexia (Council on Nutrition appetite questionnaire). Results: We included 103 patients with and without cachexia (76.9 +/- 5.2 y of age) and 56 healthy controls (72.9 +/- 5.9 y of age). Cachexia was present in 16.5\% of patients. These patients had significantly higher total FGF21 levels than controls (952.1 +/- 821.3 versus 525.2 +/- 560.3 pg/mL; P= 0.012) and the lowest FGF21 levels (293.3 +/- 150.9 pg/mL) were found in the control group (global P < 0.001). Although FAP-alpha did not differ between the three groups (global P = 0.082), bioactive FGF21 was significantly higher in patients with cachexia (global P = 0.002). Risk factor-adjusted regression analyses revealed a significant association between cachexia and total ((beta = 649.745 pg/mL; P < 0.001) and bioactive FGF21 (beta = 393.200 pg/mL; P <0.001), independent of sex, age, and body mass index. Conclusions: Patients with cachexia exhibited the highest FGF21 levels. Clarification is needed to determine whether this is an adaptive response to nutrient deprivation in disease-related cachexia or whether the increased FGF21 values contribute to the catabolic state. (C) 2018 Elsevier Inc. All rights reserved.}, language = {en} }