@misc{KosztolowiczMetzlerWąsiketal.2020, author = {Kosztolowicz, Tadeusz and Metzler, Ralf and Wąsik, Slawomir and Arabski, Michal}, title = {Modelling experimentally measured of ciprofloxacin antibiotic diffusion in Pseudomonas aeruginosa biofilm formed in artificial sputum medium}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1107}, issn = {1866-8372}, doi = {10.25932/publishup-49086}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-490866}, pages = {16}, year = {2020}, abstract = {We study the experimentally measured ciprofloxacin antibiotic diffusion through a gel-like artificial sputum medium (ASM) mimicking physiological conditions typical for a cystic fibrosis layer, in which regions occupied by Pseudomonas aeruginosa bacteria are present. To quantify the antibiotic diffusion dynamics we employ a phenomenological model using a subdiffusion-absorption equation with a fractional time derivative. This effective equation describes molecular diffusion in a medium structured akin Thompson's plumpudding model; here the 'pudding' background represents the ASM and the 'plums' represent the bacterial biofilm. The pudding is a subdiffusion barrier for antibiotic molecules that can affect bacteria found in plums. For the experimental study we use an interferometric method to determine the time evolution of the amount of antibiotic that has diffused through the biofilm. The theoretical model shows that this function is qualitatively different depending on whether or not absorption of the antibiotic in the biofilm occurs. We show that the process can be divided into three successive stages: (1) only antibiotic subdiffusion with constant biofilm parameters, (2) subdiffusion and absorption of antibiotic molecules with variable biofilm transport parameters, (3) subdiffusion and absorption in the medium but the biofilm parameters are constant again. Stage 2 is interpreted as the appearance of an intensive defence build-up of bacteria against the action of the antibiotic, and in the stage 3 it is likely that the bacteria have been inactivated. Times at which stages change are determined from the experimentally obtained temporal evolution of the amount of antibiotic that has diffused through the ASM with bacteria. Our analysis shows good agreement between experimental and theoretical results and is consistent with the biologically expected biofilm response. We show that an experimental method to study the temporal evolution of the amount of a substance that has diffused through a biofilm is useful in studying the processes occurring in a biofilm. We also show that the complicated biological process of antibiotic diffusion in a biofilm can be described by a fractional subdiffusion-absorption equation with subdiffusion and absorption parameters that change over time.}, language = {en} } @article{KosztolowiczMetzlerWąsiketal.2020, author = {Kosztolowicz, Tadeusz and Metzler, Ralf and Wąsik, Slawomir and Arabski, Michal}, title = {Modelling experimentally measured of ciprofloxacin antibiotic diffusion in Pseudomonas aeruginosa biofilm formed in artificial sputum medium}, series = {PLoS ONE}, volume = {15}, journal = {PLoS ONE}, publisher = {PLOS}, address = {San Francisco, California, US}, issn = {1932-6203}, doi = {10.1371/journal.pone.0243003}, pages = {14}, year = {2020}, abstract = {We study the experimentally measured ciprofloxacin antibiotic diffusion through a gel-like artificial sputum medium (ASM) mimicking physiological conditions typical for a cystic fibrosis layer, in which regions occupied by Pseudomonas aeruginosa bacteria are present. To quantify the antibiotic diffusion dynamics we employ a phenomenological model using a subdiffusion-absorption equation with a fractional time derivative. This effective equation describes molecular diffusion in a medium structured akin Thompson's plumpudding model; here the 'pudding' background represents the ASM and the 'plums' represent the bacterial biofilm. The pudding is a subdiffusion barrier for antibiotic molecules that can affect bacteria found in plums. For the experimental study we use an interferometric method to determine the time evolution of the amount of antibiotic that has diffused through the biofilm. The theoretical model shows that this function is qualitatively different depending on whether or not absorption of the antibiotic in the biofilm occurs. We show that the process can be divided into three successive stages: (1) only antibiotic subdiffusion with constant biofilm parameters, (2) subdiffusion and absorption of antibiotic molecules with variable biofilm transport parameters, (3) subdiffusion and absorption in the medium but the biofilm parameters are constant again. Stage 2 is interpreted as the appearance of an intensive defence build-up of bacteria against the action of the antibiotic, and in the stage 3 it is likely that the bacteria have been inactivated. Times at which stages change are determined from the experimentally obtained temporal evolution of the amount of antibiotic that has diffused through the ASM with bacteria. Our analysis shows good agreement between experimental and theoretical results and is consistent with the biologically expected biofilm response. We show that an experimental method to study the temporal evolution of the amount of a substance that has diffused through a biofilm is useful in studying the processes occurring in a biofilm. We also show that the complicated biological process of antibiotic diffusion in a biofilm can be described by a fractional subdiffusion-absorption equation with subdiffusion and absorption parameters that change over time.}, language = {en} } @article{SwidsinskiLoeningBauckeSchulzetal.2016, author = {Swidsinski, Alexander and Loening-Baucke, Vera and Schulz, Stefan and Manowsky, Julia and Verstraelen, Hans and Swidsinski, Sonja}, title = {Functional anatomy of the colonic bioreactor: Impact of antibiotics and Saccharomyces boulardii on bacterial composition in human fecal cylinders}, series = {Systematic and Applied Microbiology}, volume = {39}, journal = {Systematic and Applied Microbiology}, publisher = {Nature Publ. Group}, address = {Jena}, issn = {0723-2020}, doi = {10.1016/j.syapm.2015.11.002}, pages = {67 -- 75}, year = {2016}, abstract = {Sections of fecal cylinders were analyzed using fluorescence in situ hybridization targeting 180 bacterial groups. Samples were collected from three groups of women (N = 20 each) treated for bacterial vaginosis with ciprofloxacin + metronidazole. Group A only received the combined antibiotic regimen, whereas the A/Sb group received concomitant Saccharomyces boulardii CNCM I-745 treatment, and the A.Sb group received S. boulardii prophylaxis following the 14-day antibiotic course. The number of stool cylinders analyzed was 188 out of 228 in group A, 170 out of 228 in group A/Sb, and 172 out of 216 in group Ash. The colonic biomass was organized into a separate mucus layer with no bacteria, a 10-30 mu m broad unstirred transitional layer enriched with bacteria, and a patchy fermentative area that mixed digestive leftovers with bacteria. The antibiotics suppressed bacteria mainly in the fermentative area, whereas abundant bacterial clades retreated to the transitional mucus and survived. As a result, the total concentration of bacteria decreased only by one order. These effects were lasting, since the overall recovery of the microbial mass, bacterial diversity and concentrations were still below pre-antibiotic values 4 months after the end of antibiotic treatment. Sb-prophylaxis markedly reduced antibiotic effects and improved the recovery rates. Since the colon is a sophisticated bioreactor, the study indicated that the spatial anatomy of its biomass was crucial for its function. (C) 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).}, language = {en} }