@article{MeynersMertensWessigetal.2017, author = {Meyners, Christian and Mertens, Monique and Wessig, Pablo and Meyer-Almes, Franz-Josef}, title = {A Fluorescence-Lifetime-Based Binding Assay for Class IIa Histone Deacetylases}, series = {Chemistry - a European journal}, volume = {23}, journal = {Chemistry - a European journal}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201605140}, pages = {3107 -- 3116}, year = {2017}, abstract = {Class IIa histone deacetylases (HDACs) show extremely low enzymatic activity and no commonly accepted endogenous substrate is known today. Increasing evidence suggests that these enzymes exert their effect rather through molecular recognition of acetylated proteins and recruiting other proteins like HDAC3 to the desired target location. Accordingly, class IIa HDACs like bromodomains have been suggested to act as "Readers" of acetyl marks, whereas enzymatically active HDACs of class I or IIb are called "Erasers" to highlight their capability to remove acetyl groups from acetylated histones or other proteins. Small-molecule ligands of class IIa histone deacetylases (HDACs) have gained tremendous attention during the last decade and have been suggested as pharmaceutical targets in several indication areas such as cancer, Huntington's disease and muscular atrophy. Up to now, only enzyme activity assays with artificial chemically activated trifluoroacetylated substrates are in use for the identification and characterization of new active compounds against class IIa HDACs. Here, we describe the first binding assay for this class of HDAC enzymes that involves a simple mix-and-measure procedure and an extraordinarily robust fluorescence lifetime readout based on [1,3]dioxolo[4,5-f]benzodioxole-based ligand probes. The principle of the assay is generic and can also be transferred to class I HDAC8.}, language = {en} } @article{DaiMateGlebeetal.2018, author = {Dai, Xiaolin and Mate, Diana M. and Glebe, Ulrich and Garakani, Tayebeh Mirzaei and K{\"o}rner, Andrea and Schwaneberg, Ulrich and B{\"o}ker, Alexander}, title = {Sortase-mediated ligation of purely artificial building blocks}, series = {Polymers}, volume = {10}, journal = {Polymers}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym10020151}, pages = {13}, year = {2018}, abstract = {Sortase A (SrtA) from Staphylococcus aureus has been often used for ligating a protein with other natural or synthetic compounds in recent years. Here we show that SrtA-mediated ligation (SML) is universally applicable for the linkage of two purely artificial building blocks. Silica nanoparticles (NPs), poly(ethylene glycol) and poly(N-isopropyl acrylamide) are chosen as synthetic building blocks. As a proof of concept, NP-polymer, NP-NP, and polymer-polymer structures are formed by SrtA catalysis. Therefore, the building blocks are equipped with the recognition sequence needed for SrtA reaction-the conserved peptide LPETG-and a pentaglycine motif. The successful formation of the reaction products is shown by means of transmission electron microscopy (TEM), matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-ToF MS), and dynamic light scattering (DLS). The sortase catalyzed linkage of artificial building blocks sets the stage for the development of a new approach to link synthetic structures in cases where their synthesis by established chemical methods is complicated.}, language = {en} } @article{SenfRuprechtKishanietal.2018, author = {Senf, Deborah and Ruprecht, Colin and Kishani, Saina and Matic, Aleksandar and Toriz, Guillermo and Gatenholm, Paul and Wagberg, Lars and Pfrengle, Fabian}, title = {Tailormade polysaccharides with defined branching patterns}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {57}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {37}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201806871}, pages = {11987 -- 11992}, year = {2018}, abstract = {The heterogeneous nature of non-cellulosic polysaccharides, such as arabinoxylan, makes it difficult to correlate molecular structure with macroscopic properties. To study the impact of specific structural features of the polysaccharides on crystallinity or affinity to other cell wall components, collections of polysaccharides with defined repeating units are required. Herein, a chemoenzymatic approach to artificial arabinoxylan polysaccharides with systematically altered branching patterns is described. The polysaccharides were obtained by glycosynthase-catalyzed polymerization of glycosyl fluorides derived from arabinoxylan oligosaccharides. X-ray diffraction and adsorption experiments on cellulosic surfaces revealed that the physicochemical properties of the synthetic polysaccharides strongly depend on the specific nature of their substitution patterns. The artificial polysaccharides allow structure-property relationship studies that are not accessible by other means.}, language = {en} } @article{HahnEngelhardReschkeetal.2015, author = {Hahn, Aaron and Engelhard, Christopher and Reschke, Stefan and Teutloff, Christian and Bittl, Robert and Leimk{\"u}hler, Silke and Risse, Thomas}, title = {Structural Insights into the Incorporation of the Mo Cofactor into Sulfite Oxidase from Site-Directed Spin Labeling}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {40}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201504772}, pages = {11865 -- 11869}, year = {2015}, abstract = {Mononuclear molybdoenzymes catalyze a broad range of redox reactions and are highly conserved in all kingdoms of life. This study addresses the question of how the Mo cofactor (Moco) is incorporated into the apo form of human sulfite oxidase (hSO) by using site-directed spin labeling to determine intramolecular distances in the nanometer range. Comparative measurements of the holo and apo forms of hSO enabled the localization of the corresponding structural changes, which are localized to a short loop (residues 263-273) of the Moco-containing domain. A flap-like movement of the loop provides access to the Moco binding-pocket in the apo form of the protein and explains the earlier studies on the in vitro reconstitution of apo-hSO with Moco. Remarkably, the loop motif can be found in a variety of structurally similar molybdoenzymes among various organisms, thus suggesting a common mechanism of Moco incorporation.}, language = {en} } @article{YarmanScheller2013, author = {Yarman, Aysu and Scheller, Frieder W.}, title = {Coupling biocatalysis with molecular imprinting in a biomimetic sensor}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {52}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {44}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201305368}, pages = {11521 -- 11525}, year = {2013}, language = {en} }