@article{BeckerD'AloisioChristensonetal.2021, author = {Becker, George D. and D'Aloisio, Anson and Christenson, Holly M. and Zhu, Yongda and Worseck, G{\´a}bor and Bolton, James S.}, title = {The mean free path of ionizing photons at 5 < z < 6}, series = {Monthly notices of the Royal Astronomical Society}, volume = {508}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stab2696}, pages = {1853 -- 1869}, year = {2021}, abstract = {The mean free path of ionizing photons, lambda(mfp), is a key factor in the photoionization of the intergalactic medium (IGM). At z greater than or similar to 5, however, lambda(mfp) may be short enough that measurements towards QSOs are biased by the QSO proximity effect. We present new direct measurements of lambda(mfp) that address this bias and extend up to z similar to 6 for the first time. Our measurements at z similar to 5 are based on data from the Giant Gemini GMOS survey and new Keck LRIS observations of low-luminosity QSOs. At z similar to 6 we use QSO spectra from Keck ESI and VLT X-Shooter. We measure lambda(mfp) = 9.09(-1.28)(+1.62) proper Mpc and 0.75(-0.45)(+0.65) proper Mpc (68 percent confidence) at z = 5.1 and 6.0, respectively. The results at z = 5.1 are consistent with existing measurements, suggesting that bias from the proximity effect is minor at this redshift. At z = 6.0, however, we find that neglecting the proximity effect biases the result high by a factor of two or more. Our measurement at z = 6.0 falls well below extrapolations from lower redshifts, indicating rapid evolution in lambda(mfp) over 5 < z < 6. This evolution disfavours models in which reionization ended early enough that the IGM had time to fully relax hydrodynamically by z = 6, but is qualitatively consistent with models wherein reionization completed at z = 6 or even significantly later. Our mean free path results are most consistent with late reionization models wherein the IGM is still 20 percent neutral at z = 6, although our measurement at z = 6.0 is even lower than these models prefer.}, language = {en} } @article{CrightonProchaskaMurphyetal.2019, author = {Crighton, Neil H. M. and Prochaska, J. Xavier and Murphy, Michael T. and Worseck, Gabor and Smith, Britton D.}, title = {Imprints of the first billion years}, series = {Monthly notices of the Royal Astronomical Society}, volume = {482}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty2762}, pages = {1456 -- 1470}, year = {2019}, abstract = {Lyman limit systems (LLSs) trace the low-density circumgalactic medium and the most dense regions of the intergalactic medium, so their number density and evolution at high-redshift, just after reionization, are important to constrain. We present a survey for LLSs at high redshifts, z(LLS) = 3.5-5.4, in the homogeneous data set of 153 optical quasar spectra at z similar to 5 from the Giant Gemini GMOS survey. Our analysis includes detailed investigation of survey biases using mock spectra which provide important corrections to the raw measurements. We estimate the incidence of LLSs per unit redshift at z approximate to 4.4 to be l(z) = 2.6 +/- 0.4. Combining our results with previous surveys at z(LLS) < 4, the best-fit power-law evolution is l(z) = l(*)[(1 + z)/4](alpha) with l* = 1.46 +/- 0.11 and alpha = 1.70 +/- 0.22 (68 per cent confidence intervals). Despite hints in previous z(LLS) < 4 results, there is no indication for a deviation from this single power-law soon after reionization. Finally, we integrate our new results with previous surveys of the intergalactic and circumgalactic media to constrain the hydrogen column density distribution function, f(N-HI, X), over 10 orders ofmagnitude. The data at z similar to 5 are not well-described by the f(N-HI, X) model previously reported for z similar to 2-3 (after re-scaling) and a 7-pivot model fitting the full z similar to 2-5 data set is statistically unacceptable. We conclude that there is significant evolution in the shape of f(N-HI, X) over this similar to 2-billion-year period.}, language = {en} } @article{WisotzkiBaconBlaizotetal.2016, author = {Wisotzki, Lutz and Bacon, Roland and Blaizot, J. and Brinchmann, Jarle and Herenz, Edmund Christian and Schaye, Joop and Bouche, Nicolas and Cantalupo, Sebastiano and Contini, Thierry and Carollo, C. M. and Caruana, Joseph and Courbot, J. -B. and Emsellem, E. and Kamann, S. and Kerutt, Josephine Victoria and Leclercq, F. and Lilly, S. J. and Patricio, V. and Sandin, C. and Steinmetz, Matthias and Straka, Lorrie A. and Urrutia, Tanya and Verhamme, A. and Weilbacher, Peter Michael and Wendt, Martin}, title = {Extended Lyman alpha haloes around individual high-redshift galaxies revealed by MUSE}, series = {Science}, volume = {587}, journal = {Science}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527384}, pages = {27}, year = {2016}, abstract = {We report the detection of extended Ly alpha emission around individual star-forming galaxies at redshifts z = 3-6 in an ultradeep exposure of the Hubble Deep Field South obtained with MUSE on the ESO-VLT. The data reach a limiting surface brightness (1 sigma) of similar to 1 x 10(-19) erg s(-1) cm(-2) arcsec(-2) in azimuthally averaged radial profiles, an order of magnitude improvement over previous narrowband imaging. Our sample consists of 26 spectroscopically confirmed Ly alpha-emitting, but mostly continuum-faint (m(AB) greater than or similar to 27) galaxies. In most objects the Ly alpha emission is considerably more extended than the UV continuum light. While five of the faintest galaxies in the sample show no significantly detected Ly alpha haloes, the derived upper limits suggest that this is due to insufficient S/N. Ly alpha haloes therefore appear to be ubiquitous even for low-mass (similar to 10(8)-10(9) M-circle dot) star-forming galaxies at z > 3. We decompose the Ly alpha emission of each object into a compact component tracing the UV continuum and an extended halo component, and infer sizes and luminosities of the haloes. The extended Ly alpha emission approximately follows an exponential surface brightness distribution with a scale length of a few kpc. While these haloes are thus quite modest in terms of their absolute sizes, they are larger by a factor of 5-15 than the corresponding rest-frame UV continuum sources as seen by HST. They are also much more extended, by a factor similar to 5, than Ly alpha haloes around low-redshift star-forming galaxies. Between similar to 40\% and greater than or similar to 90\% of the observed Ly alpha flux comes from the extended halo component, with no obvious correlation of this fraction with either the absolute or the relative size of the Ly alpha halo. Our observations provide direct insights into the spatial distribution of at least partly neutral gas residing in the circumgalactic medium of low to intermediate mass galaxies at z > 3.}, language = {en} } @phdthesis{Hildebrandt2015, author = {Hildebrandt, Dominik}, title = {The HI Lyman-alpha opacity at redshift 2.7 < z < 3.6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78355}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 292}, year = {2015}, abstract = {Most of the baryonic matter in the Universe resides in a diffuse gaseous phase in-between galaxies consisting mostly of hydrogen and helium. This intergalactic medium (IGM) is distributed in large-scale filaments as part of the overall cosmic web. The luminous extragalactic objects that we can observe today, such as galaxies and quasars, are surrounded by the IGM in the most dense regions within the cosmic web. The radiation of these objects contributes to the so-called ultraviolet background (UVB) which keeps the IGM highly ionized ever since the epoch of reionization. Measuring the amount of absorption due to intergalactic neutral hydrogen (HI) against extragalactic background sources is a very useful tool to constrain the energy input of ionizing sources into the IGM. Observations suggest that the HI Lyman-alpha effective optical depth, τ_eff, decreases with decreasing redshift, which is primarily due to the expansion of the Universe. However, some studies find a smaller value of the effective optical depth than expected at the specific redshift z~3.2, possibly related to the complete reionization of helium in the IGM and a hardening of the UVB. The detection and possible cause of a decrease in τ_eff at z~3.2 is controversially debated in the literature and the observed features need further explanation. To better understand the properties of the mean absorption at high redshift and to provide an answer for whether the detection of a τ_eff feature is real we study 13 high-resolution, high signal-to-noise ratio quasar spectra observed with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the Very Large Telescope (VLT). The redshift evolution of the effective optical depth, τ_eff(z), is measured in the redshift range 2.7≤z≤3.6. The influence of metal absorption features is removed by performing a comprehensive absorption-line-fitting procedure. In the first part of the thesis, a line-parameter analysis of the column density, N, and Doppler parameter, b, of ≈7500 individually fitted absorption lines is performed. The results are in good agreement with findings from previous surveys. The second (main) part of this thesis deals with the analysis of the redshift evolution of the effective optical depth. The τ_eff measurements vary around the empirical power law τ_eff(z)~(1+z)^(γ+1) with γ=2.09±0.52. The same analysis as for the observed spectra is performed on synthetic absorption spectra. From a comparison between observed and synthetic spectral data it can be inferred that the uncertainties of the τ_eff values are likely underestimated and that the scatter is probably caused by high-column-density absorbers with column densities in the range 15≤logN≤17. In the real Universe, such absorbers are rarely observed, however. Hence, the difference in τ_eff from different observational data sets and absorption studies is most likely caused by cosmic variance. If, alternatively, the disagreement between such data is a result of an too optimistic estimate of the (systematic) errors, it is also possible that all τ_eff measurements agree with a smooth evolution within the investigated redshift range. To explore in detail the different analysis techniques of previous studies an extensive literature comparison to the results of this work is presented in this thesis. Although a final explanation for the occurrence of the τ_eff deviation in different studies at z~3.2 cannot be given here, our study, which represents the most detailed line-fitting analysis of its kind performed at the investigated redshifts so far, represents another important benchmark for the characterization of the HI Ly-alpha effective optical depth at high redshift and its indicated unusual behavior at z~3.2.}, language = {en} } @article{EvansMurphyWhitmoreetal.2014, author = {Evans, T. M. and Murphy, M. T. and Whitmore, J. B. and Misawa, T. and Centurion, Martin and Lopez, S. and Martins, C. J. A. P. and Molaro, P. and Petitjean, P. and Rahmani, H. and Srianand, R. and Wendt, Martin}, title = {The UVES Large Program for testing fundamental physics - III. Constraints on the fine-structure constant from three telescopes}, series = {Monthly notices of the Royal Astronomical Society}, volume = {445}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stu1754}, pages = {128 -- 150}, year = {2014}, language = {en} } @article{BonifacioRahmaniWhitmoreetal.2014, author = {Bonifacio, P. and Rahmani, H. and Whitmore, J. B. and Wendt, Martin and Centurion, Martin and Molaro, P. and Srianand, R. and Murphy, M. T. and Petitjean, P. and Agafonova, I. I. and Evans, T. M. and Levshakov, S. A. and Lopez, S. and Martins, C. J. A. P. and Reimers, D. and Vladilo, G.}, title = {Fundamental constants and high-resolution spectroscopy}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {335}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201312005}, pages = {83 -- 91}, year = {2014}, language = {en} } @article{Wendt2014, author = {Wendt, Martin}, title = {Constraints on variations of m(p)/m(e) based on UVES observations of H-2}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {335}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201312008}, pages = {106 -- 112}, year = {2014}, abstract = {This article summarizes the latest results on the proton-to-electron mass ratio derived from H-2 observations at high redshift in the light of possible variations of fundamental physical constants. The focus lies on UVES observations of the past years as enormous progress was achieved since the first positive results on / were published. With the better understanding of systematics, dedicated observation runs, and numerous approaches to improve wavelength calibration accuracy, all current findings are in reasonable good agreement with no variation and provide an upper limit of / < 1 x 10(-5) for the redshift range of 2 < z < 3. ((}, language = {en} } @article{DraganovaRichterFechner2012, author = {Draganova, Nadya and Richter, Philipp and Fechner, Cora}, title = {High-resolution observations of two O VI absorbers at z approximate to 2 toward PKS 1448-232}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {538}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {1}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201116730}, pages = {8}, year = {2012}, abstract = {To explore the ionization conditions in highly-ionized absorbers at high redshift, we study in detail two intervening O vi absorbers at z approximate to 2 toward the quasar PKS 1448-232, based on high (R approximate to 75 000) and intermediate (R approximate to 45 000) resolution optical VLT/UVES spectra. We find that both absorption systems are composed of several narrow subcomponents with typical Civ/O VI Doppler-parameters of b < 10 km s(-1). This implies that the gas temperatures are T < 10(5) K and that the absorbers are photoionized by the UV background. The system at z = 2.1098 represents a simple, isolated O VI absorber that has only two absorption components and is relatively metal-rich (Z similar to 0.6 solar). Ioinization modeling implies that the system is photoionized with O VI, C IV, and H I coexisting in the same gas phase. The second system at z = 2.1660 represents a complicated, multi-component absorption system with eight O VI components spanning almost 300 km s(-1) in radial velocity. The photoionization modeling implies that the metallicity is non-uniform and relatively low (<= 0.1 solar) and that the O VI absorption must arise in a gas phase that differs from that traced by C IV, C III, and H I. Our detailed study of the two O VI systems towards PKS 1448-232 shows that multi-phase, multi-component high-ion absorbers similar to the one at z = 2.1660 can be described by applying a detailed ionization modeling of the various subcomponents to obtain reliable measurements of the physical conditions and the metal abundances in the gas.}, language = {en} } @article{WendtMolaro2012, author = {Wendt, Martin and Molaro, P.}, title = {QSO 0347-383 and the invariance of m(p)/m(e) in the course of cosmic time}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {541}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {3}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201218862}, pages = {8}, year = {2012}, abstract = {Context. The variation of the dimensionless fundamental physical constant mu = m(p)/m(e) - the proton to electron mass ratio - can be constrained via observation of Lyman and Werner lines of molecular hydrogen in the spectra of damped Lyman alpha systems (DLAs) in the line of sight to distant QSOs. Aims. Our intention is to maximize the possible precision of quasar absorption spectroscopy with regard to the investigation of the variation of the proton-to-electron mass-ratio mu. The demand for precision requires an understanding of the errors involved and effective techniques to handle present systematic errors. Methods. An analysis based on UVES high resolution data sets of QSO 0347-383 and its DLA is put forward and new approaches to some of the steps involved in the data analysis are introduced. We apply corrections for the observed offsets between discrete spectra and for the first time we find indications for inter-order distortions. Results. Drawing on VLT-UVES observations of QSO 0347-383 in 2009 our analysis yields Delta mu/mu = (4.3 +/- 7.2) x 10(-6) at z(abs) = 3.025. Conclusions. Current analyzes tend to underestimate the impact of systematic errors. Based on the scatter of the measured redshifts and the corresponding low significance of the redshift-sensitivity correlation we estimate the limit of accuracy of line position measurements to similar to 220 m s (1), consisting of roughly 150 m s (1) due to the uncertainty of the absorption line fit and about 150 m s (1) allocated to systematics related to instrumentation and calibration.}, language = {en} }