@phdthesis{Fischer2022, author = {Fischer, Axel}, title = {Investigating the impact of genomic compartments contributing to non-Mendelian inheritance based on high throughput sequencing data}, doi = {10.25932/publishup-54900}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549001}, school = {Universit{\"a}t Potsdam}, pages = {vii, 122}, year = {2022}, abstract = {More than a century ago the phenomenon of non-Mendelian inheritance (NMI), defined as any type of inheritance pattern in which traits do not segregate in accordance with Mendel's laws, was first reported. In the plant kingdom three genomic compartments, the nucleus, chloroplast, and mitochondrion, can participate in such a phenomenon. High-throughput sequencing (HTS) proved to be a key technology to investigate NMI phenomena by assembling and/or resequencing entire genomes. However, generation, analysis and interpretation of such datasets remain challenging by the multi-layered biological complexity. To advance our knowledge in the field of NMI, I conducted three studies involving different HTS technologies and implemented two new algorithms to analyze them. In the first study I implemented a novel post-assembly pipeline, called Semi-Automated Graph-Based Assembly Curator (SAGBAC), which visualizes non-graph-based assemblies as graphs, identifies recombinogenic repeat pairs (RRPs), and reconstructs plant mitochondrial genomes (PMG) in a semiautomated workflow. We applied this pipeline to assemblies of three Oenothera species resulting in a spatially folded and circularized model. This model was confirmed by PCR and Southern blot analyses and was used to predict a defined set of 70 PMG isoforms. With Illumina Mate Pair and PacBio RSII data, the stoichiometry of the RRPs was determined quantitatively differing up to three-fold. In the second study I developed a post-multiple sequence alignment algorithm, called correlation mapping (CM), which correlates segment-wise numbers of nucleotide changes to a numeric ascertainable phenotype. We applied this algorithm to 14 wild type and 18 mutagenized plastome assemblies within the Oenothera genus and identified two genes, accD and ycf2 that may cause the competitive behavior of plastid genotypes as plastids can be biparental inherited in Oenothera. Moreover, lipid composition of the plastid envelope membrane is affected by polymorphisms within these two genes. For the third study, I programmed a pipeline to investigate a NMI phenomenon, known as paramutation, in tomato by analyzing DNA and bisulfite sequencing data as well as microarray data. We identified the responsible gene (Solyc02g0005200) and were able to fully repress its caused phenotype by heterologous complementation with a paramutation insensitive transgene of the Arabidopsis thaliana orthologue. Additionally, a suppressor mutant shows a globally altered DNA methylation pattern and carries a large deletion leading to a gene fusion involving a histone deacetylase. In conclusion, my developed and implemented algorithms and data analysis pipelines are suitable to investigate NMI and led to novel insights about such phenomena by reconstructing PMGs (SAGBAC) as a requirement to study mitochondria-associated phenotypes, by identifying genes (CM) causing interplastidial competition as well by applying a DNA/Bisulfite-seq analysis pipeline to shed light in a transgenerational epigenetic inheritance phenomenon.}, language = {en} } @phdthesis{IgualGil2022, author = {Igual Gil, Carla}, title = {Role of the GDF15-GFRAL pathway under skeletal muscle mitochondrial stress}, doi = {10.25932/publishup-55469}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-554693}, school = {Universit{\"a}t Potsdam}, pages = {IXIII, 73, XVII}, year = {2022}, abstract = {Growth differentiation factor 15 (GDF15) is a stress-induced cytokine secreted into the circulation by a number of tissues under different pathological conditions such as cardiovascular disease, cancer or mitochondrial dysfunction, among others. While GDF15 signaling through its recently identified hindbrain-specific receptor GDNF family receptor alpha-like (GFRAL) has been proposed to be involved in the metabolic stress response, its endocrine role under chronic stress conditions is still poorly understood. Mitochondrial dysfunction is characterized by the impairment of oxidative phosphorylation (OXPHOS), leading to inefficient functioning of mitochondria and consequently, to mitochondrial stress. Importantly, mitochondrial dysfunction is among the pathologies to most robustly induce GDF15 as a cytokine in the circulation. The overall aim of this thesis was to elucidate the role of the GDF15-GFRAL pathway under mitochondrial stress conditions. For this purpose, a mouse model of skeletal muscle-specific mitochondrial stress achieved by ectopic expression of uncoupling protein 1 (UCP1), the HSA-Ucp1-transgenic (TG) mouse, was employed. As a consequence of mitochondrial stress, TG mice display a metabolic remodeling consisting of a lean phenotype, an improved glucose metabolism, an increased metabolic flexibility and a metabolic activation of white adipose tissue. Making use of TG mice crossed with whole body Gdf15-knockout (GdKO) and Gfral-knockout (GfKO) mouse models, this thesis demonstrates that skeletal muscle mitochondrial stress induces the integrated stress response (ISR) and GDF15 in skeletal muscle, which is released into the circulation as a myokine (muscle-induced cytokine) in a circadian manner. Further, this work identifies GDF15-GFRAL signaling to be responsible for the systemic metabolic remodeling elicited by mitochondrial stress in TG mice. Moreover, this study reveals a daytime-restricted anorexia induced by the GDF15-GFRAL axis under muscle mitochondrial stress, which is, mechanistically, mediated through the induction of hypothalamic corticotropin releasing hormone (CRH). Finally, this work elucidates a so far unknown physiological outcome of the GDF15-GFRAL pathway: the induction of anxiety-like behavior. In conclusion, this study uncovers a muscle-brain crosstalk under skeletal muscle mitochondrial stress conditions through the induction of GDF15 as a myokine that signals through the hindbrain-specific GFRAL receptor to elicit a stress response leading to metabolic remodeling and modulation of ingestive- and anxiety-like behavior.}, language = {en} } @phdthesis{Hauffe2021, author = {Hauffe, Robert}, title = {Investigating metabolic consequences of an HSP60 reduction during diet-induced obesity}, doi = {10.25932/publishup-50929}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509294}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 116}, year = {2021}, abstract = {The mitochondrial chaperone complex HSP60/HSP10 facilitates mitochondrial protein homeostasis by folding more than 300 mitochondrial matrix proteins. It has been shown previously that HSP60 is downregulated in brains of type 2 diabetic (T2D) mice and patients, causing mitochondrial dysfunction and insulin resistance. As HSP60 is also decreased in peripheral tissues in T2D animals, this thesis investigated the effect of overall reduced HSP60 in the development of obesity and associated co-morbidities. To this end, both female and male C57Bl/6N control (i.e. without further alterations in their genome, Ctrl) and heterozygous whole-body Hsp60 knock-out (Hsp60+/-) mice, which exhibit a 50 \% reduction of HSP60 in all tissues, were fed a normal chow diet (NCD) or a highfat diet (HFD, 60 \% calories from fat) for 16 weeks and were subjected to extensive metabolic phenotyping including indirect calorimetry, NMR spectroscopy, insulin, glucose and pyruvate tolerance tests, vena cava insulin injections, as well as histological and molecular analysis. Interestingly, NCD feeding did not result in any striking phenotype, only a mild increase in energy expenditure in Hsp60+/- mice. Exposing mice to a HFD however revealed an increased body weight due to higher muscle mass in female Hsp60+/- mice, with a simultaneous decrease in energy expenditure. Additionally, these mice displayed decreased fasting glycemia. Opposingly, male Hsp60+/- compared to control mice showed lower body weight gain due to decreased fat mass and an increased energy expenditure, strikingly independent of lean mass. Further, only male Hsp60+/- mice display improved HOMA-IR and Matsuda insulin sensitivity indices. Despite the opposite phenotype in regards to body weight development, Hsp60+/- mice of both sexes show a significantly higher cell number, as well as a reduction in adipocyte size in the subcutaneous and gonadal white adipose tissue (sc/gWAT). Curiously, this adipocyte hyperplasia - usually associated with positive aspects of WAT function - is disconnected from metabolic improvements, as the gWAT of male Hsp60+/- mice shows mitochondrial dysfunction, oxidative stress, and insulin resistance. Transcriptomic analysis of gWAT shows an up regulation of genes involved in macroautophagy. Confirmatory, expression of microtubuleassociated protein 1A/1B light chain 3B (LC3), as a protein marker of autophagy, and direct measurement of lysosomal activity is increased in the gWAT of male Hsp60+/- mice. In summary, this thesis revealed a novel gene-nutrient interaction. The reduction of the crucial chaperone HSP60 did not have large effects in mice fed a NCD, but impacted metabolism during DIO in a sex-specific manner, where, despite opposing body weight and body composition phenotypes, both female and male Hsp60+/- mice show signs of protection from high fat diet-induced systemic insulin resistance.}, language = {en} } @phdthesis{Riedel2019, author = {Riedel, Simona}, title = {Characterization of Mitochondrial ABC Transporter Homologues in Rhodobacter capsulatus}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2019}, abstract = {ABC-Transporter (ABC abgeleitet von ATP-Binding Cassette) geh{\"o}ren zur Klasse der Transmembran-Proteine und kommen in allen drei Dom{\"a}nen des Lebens vor. Ihr struktureller Aufbau ist dabei stets {\"a}hnlich, wohingegen konservierte Proteinsequenzen selten vorkommen. Die Transporter sind aus zwei lipophilen, membran-durchspannenden Dom{\"a}nen, welche auch TMDs (abgeleitet von Transmembrane spanning Domains) genannt werden, und zwei hydrophilen Dom{\"a}nen, die auch NBDs (abgeleitet von Nucleotide Binding Domains) genannt werden, aufgebaut. Die Vielzahl der durch ABC-Transporter bef{\"o}rderten Molek{\"u}le erkl{\"a}rt dabei die enorme Anzahl diverser TMDs. In den Mitochondrien des Menschen findet man vier ABC-Transporter (ABCB6, ABCB7, ABCB8 und ABCB10) mit funktionellen Homologen in Hefen und Pflanzen. In Bakterien hingegen k{\"o}nnen, mit Ausnahme von Rickettsiae und verwandten Bakterien, keine Homologen zu mitochondrialen ABC-Transportern identifiziert werden. Die transportierten Molek{\"u}le sowie die damit verbundenen Funktionen sind im Einzelnen bislang weitgehend unbekannt. ABCB7 und die entsprechenden Homologen in Hefen (Atm1) und in Pflanzen (ATM3) konnten mit der cytosolischen Eisen-Schwefel-Cluster-Biosynthese in Zusammenhang gebracht werden. Eine schwefelhaltige Verbindung der mitochondrialen Matrix wird mit Hilfe dieses Transporters der cytosolischen Eisen-Schwefel-Cluster-Assemblierung zur Verf{\"u}gung gestellt. Die 2014 publizierten Kristallstrukturen von Atm1 (Hefe) und Atm1 aus Novosphingobium aromaticivorans offenbarten dabei eine hoch konservierte Glutathion-Bindetasche innerhalb der TMDs f{\"u}r ABCB7 Homologe. In der Modellpflanze Arabidopsis thaliana konnte ATM3 zus{\"a}tzlich mit der Biosynthese des Molybd{\"a}n-Cofaktors in Verbindung gebracht werden. In der vorliegenden Arbeit wurde das α-Proteobacterium Rhodobacter capsulatus als Modellorganismus genutzt, um mitochondriale ABC-Transporter Homologe zu untersuchen. Das Bakterium enth{\"a}lt zwei ABC-Transporter-Gene, rcc03139 und rcc02305, die mit den humanen mitochondrialen Transportern große Sequenz{\"u}bereinstimmungen aufweisen (rcc03139: 41 \% respektive 38 \% Identit{\"a}t mit ABCB8 und ABCB10, rcc02305: 47 \% identisch mit ABCB7 und ABCB6). Mit Hilfe erzeugter Interposon-Mutanten (Δrcc02305I und Δrcc03139I) konnte erstmals gezeigt werden, dass bakterielle Transporter funktionell sehr {\"a}hnliche Aufgaben wie die mitochondrialen ABC-Transporter {\"u}bernehmen. Beispielsweise akkumulierten beide Interposon-Mutanten reaktive Sauerstoff-Spezies (ROS) ohne gleichzeitige Akkumulation von Glutathion oder Eisen. Weiterhin konnten wir zeigen, dass, {\"a}hnlich wie bereits f{\"u}r ATM3 postuliert, die Biosynthese des Molybd{\"a}n-Cofaktors in Δrcc02305I ver{\"a}ndert ist. Mit Hilfe einer lebensf{\"a}higen Doppelmutante, in der beide ABC-Transporter-Gene gleichzeitig deletiert wurden, konnten wir ausschließen, dass die beiden bakteriellen ABC-Transporter grunds{\"a}tzlich redundante Funktionen haben. Durch die Analyse des Proteoms von Δrcc03139I im Vergleich zu der des Wildtyps, konnte eine extreme Beeinflussung der Tetrapyrrol Biosynthese sowie entsprechender Zielproteine identifiziert werden. Dies konnte zus{\"a}tzlich durch die Quantifizierung einzelner Zwischenprodukte der Biosynthese best{\"a}tigt werden. Im Gegensatz dazu konnte anhand der Analyse des Proteoms in Verbindung mit analytischen Methoden in Δrcc02305I ein Ungleichgewicht in der Schwefelverteilung identifiziert werden. Zusammen mit der Entdeckung einer Pyridoxalphosphat (PLP) Bindestelle in Rcc02305 und anderen ABCB7-artigen Transportern, welche direkt mit dem Walker-A-Motiv der NBD {\"u}berlappt, erm{\"o}glichte dies eine v{\"o}llig neue Theorie, wie die schwefelhaltige Verbindung transportiert werden kann. Wir gehen davon aus, dass an PLP zun{\"a}chst ein Persulfid produziert wird, welches unmittelbar mit dem Glutathion der transmembranen Bindetasche zu einem gemischten Polysulfid reagiert. Im Anschluss daran wird die ATP-Bindestelle frei und die Hydrolyse des ATPs l{\"o}st eine Konformations{\"a}nderung aus, welche das gemischte Polysulfid ins Periplasma bzw. in den intermembranen Raum freigibt.}, language = {en} } @phdthesis{Nerlich2007, author = {Nerlich, Annika}, title = {Die Rolle der Phosphatidylserin Decarboxylase f{\"u}r die mitochondriale Phospholipid-Biosynthese in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14522}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Die durch Phosphatidylserin Decarboxylase (PSD) katalysierte Decarboxylierung von Phosphatidylserin (PS) zu Phosphatidylethanolamin (PE) ist f{\"u}r Mitochondrien in Hefe und M{\"a}usen von essentieller Bedeutung. Im Rahmen der vorliegenden Dissertation wurde erstmals die Rolle dieses PE-Syntheseweges in Pflanzen untersucht. Die drei in Arabidopsis identifizierten PSD Gene atPSD1, atPSD2, atPSD3 codieren f{\"u}r Enzyme, die in Membranen der Mitochondrien (atPSD1), der Tonoplasten (atPSD2) und des Endoplasmatischen Retikulums (atPSD3) lokalisiert sind. Der Beitrag der einzelnen PSDs zur PE-Synthese wurde anhand von psd Null-Mutanten untersucht. Dabei stellte sich atPSD3 als das Enzym mit der h{\"o}chsten Aktivit{\"a}t heraus. Alternativ zum PSD-Weg wird in Arabidopsis PE auch mittels Aminoalkohol-phosphotransferase synthetisiert. Der Verlust der gesamten PSD-Aktivit{\"a}t, wie es in der erzeugten psd Dreifachmutante der Fall ist, wirkt sich ausschließlich auf die Lipidzusammensetzung in der Mitochondrienmembran aus. Demzufolge wird extramitochondriales PE haupts{\"a}chlich {\"u}ber die Aminoalkoholphosphotransferase synthetisiert. Die ver{\"a}nderte Lipidzusammensetzung der Mitochondrienmembran hatte jedoch keinen Einfluss auf die Anzahl, Gr{\"o}ße und Ultrastruktur der Mitochondrien sowie auf das ADP/ATP-Verh{\"a}ltnis und die Respiration. Neben der Bereitstellung von Reduktions{\"a}quivalenten beeinflusst die Funktionalit{\"a}t der Mitochondrien auch die Bildung von Bl{\"u}ten- und Staubbl{\"a}ttern. Diese Bl{\"u}tenorgane waren in der psd Dreifachmutante stark ver{\"a}ndert, und der Bl{\"u}tenph{\"a}notyp {\"a}hnelte der APETALA3-Mutante. Dieses hom{\"o}otische Gen ist f{\"u}r die Ausbildung von Bl{\"u}ten- und Staubbl{\"a}ttern verantwortlich. F{\"u}r die Erzeugung der Mutanten psd2-1 und psd3-1 wurde ein T-DNA Vektor verwendet, der den Promotor des APETALA3 Gens enthielt, welcher in den Mutanten psd2-1, psd3-1 sowie psd2-1psd3-1 und der psd1psd2-1psd3-1 Dreifachmutante eine vergleichbare Co-Suppression des APETALA3 Gens hervorruft. Der Bl{\"u}tenph{\"a}notyp trat jedoch nur in der psd Dreifachmutante auf, da nur in ihr die Kombination von geringen Funktionst{\"o}rungen der Mitochondrien, hervorgerufen durch ver{\"a}nderte Lipidzusammensetzung, mit der Co-Suppression von APETALA3 auftritt.}, language = {de} } @phdthesis{Thierbach2004, author = {Thierbach, Ren{\´e}}, title = {Identifikation des mitochondrialen Proteins Frataxin als stoffwechselmodulierenden Tumorsuppressor}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001943}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Die Krebsentstehung wurde vor rund 80 Jahren auf ver{\"a}nderten zellul{\"a}ren Energiestoffwechsel zur{\"u}ckgef{\"u}hrt. Diese Hypothese konnte bisher weder experimentell bewiesen noch widerlegt werden. Durch den Einsatz zweier Modellsysteme mit unterschiedlicher Expression des mitochondrialen Proteins Frataxin konnte in der vorliegenden Arbeit gezeigt werden, dass der mitochondriale Energiestoffwechsel einen Einfluss auf die Tumorentstehung zu besitzen scheint. Eine Reduktion des mitochondrialen Energiestoffwechsels wurde durch die hepatozytenspezifische Ausschaltung des mitochondrialen Proteins Frataxin in M{\"a}usen erreicht. Der durch das Cre-/loxP-Rekombinasesystem erreichte organspezifische Knock-out wurde auf Transkriptions- und Translationsebene nachgewiesen. Anhand verminderter Aconitaseaktivit{\"a}t, geringeren Sauerstoffverbrauches und reduzierten ATP-Gehaltes im Lebergewebe wurde ein signifikant verminderter Energiestoffwechsel dargestellt. Zwar entsprach die Genotypenverteilung in den Versuchsgruppen der erwarteten Mendelschen Verteilung, dennoch war die mittlere Lebenserwartung der Knock-out-Tiere mit ca. 30 Wochen stark reduziert. Bereits in jungem Alter war bei diesen Tieren die Ausbildung von pr{\"a}neoplastischen Herden zu beobachten. Mit proteinbiochemischen Nachweistechniken konnte in Lebergewebe 4-8 Wochen alter Tiere eine verst{\"a}rkte Aktivierung des Apoptosesignalweges (Cytochrom C im Zytosol, verst{\"a}rkte Expression von Bax) sowie eine Modulation stressassoziierter Proteine (geringere Phosphorylierungsrate p38-MAPK, vermehrte Expression HSP-25, verminderte Expression HSP-70) aufgezeigt werden. Im inversen Ansatz wurde eine Steigerung des mitochondrialen Energiestoffwechsels durch stabile transgene Frataxin{\"u}berexpression in zwei Kolonkarzinomzelllinien erreicht. Diese Steigerung zeigte sich durch erh{\"o}hte Aconitaseaktivit{\"a}t, erh{\"o}hten Sauerstoffverbrauch, gesteigertes mitochondriales Membranpotenzial und erh{\"o}hten ATP-Gehalt in den Zellen. Die frataxin{\"u}berexprimierenden Zellen wuchsen signifikant langsamer als Kontrollzellen und zeigten im Soft-Agar-Assay und im Nacktmausmodell ein deutlich geringeres Potenzial zur Ausbildung von Kolonien bzw. Tumoren. Mittels Immunoblot war hier eine vermehrte Phosphorylierung der p38-MAPK festzustellen. Die zusammenfassende Betrachtung beider Modelle zeigt, dass ein reduzierter mitochondrialer Energiestoffwechsel durch Regulation der p38-MAPK und apoptotischer Signalwege ein erh{\"o}htes Krebsrisiko zu verursachen vermag.}, language = {de} }