@article{SeilervanVelzenNeuetal.2017, author = {Seiler, Claudia and van Velzen, Ellen and Neu, Thomas R. and Gaedke, Ursula and Berendonk, Thomas U. and Weitere, Markus}, title = {Grazing resistance of bacterial biofilms: a matter of predators' feeding trait}, series = {FEMS microbiology ecology}, volume = {93}, journal = {FEMS microbiology ecology}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0168-6496}, doi = {10.1093/femsec/fix112}, pages = {9}, year = {2017}, abstract = {Biofilm formation in bacteria is considered to be one strategy to avoid protozoan grazing. However, this assumption is largely based on experiments with suspension-feeding protozoans. Here we test the hypothesis that grazing resistance depends on both the grazers' feeding trait and the bacterial phenotype, rather than being a general characteristic of bacterial biofilms. We combined batch experiments with mathematical modelling, considering the bacterium Pseudomonas putida and either a suspension-feeding (i.e. the ciliate Paramecium tetraurelia) or a surface-feeding grazer (i.e. the amoeba Acanthamoeba castellanii). We find that both plankton and biofilm phenotypes were consumed, when exposed to their specialised grazer, whereas the other phenotype remained grazing-resistant. This was consistently shown in two experiments (starting with either only planktonic bacteria or with additional pre-grown biofilms) and matches model predictions. In the experiments, the plankton feeder strongly stimulated the biofilm biomass. This stimulation of the resistant prey phenotype was not predicted by the model and it was not observed for the biofilm feeders, suggesting the existence of additional mechanisms that stimulate biofilm formation besides selective feeding. Overall, our results confirm our hypothesis that grazing resistance is a matter of the grazers' trait (i.e. feeding type) rather than a biofilm-specific property.}, language = {en} }