@misc{HofreiterPaijmansGoodchildetal.2015, author = {Hofreiter, Michael and Paijmans, Johanna L. A. and Goodchild, Helen and Speller, Camilla F. and Barlow, Axel and Gonzalez-Fortes, Gloria M. and Thomas, Jessica A. and Ludwig, Arne and Collins, Matthew J.}, title = {The future of ancient DNA}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {908}, issn = {1866-8372}, doi = {10.25932/publishup-43881}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438816}, pages = {284 -- 295}, year = {2015}, abstract = {Technological innovations such as next generation sequencing and DNA hybridisation enrichment have resulted in multi-fold increases in both the quantity of ancient DNA sequence data and the time depth for DNA retrieval. To date, over 30 ancient genomes have been sequenced, moving from 0.7x coverage (mammoth) in 2008 to more than 50x coverage (Neanderthal) in 2014. Studies of rapid evolutionary changes, such as the evolution and spread of pathogens and the genetic responses of hosts, or the genetics of domestication and climatic adaptation, are developing swiftly and the importance of palaeogenomics for investigating evolutionary processes during the last million years is likely to increase considerably. However, these new datasets require new methods of data processing and analysis, as well as conceptual changes in interpreting the results. In this review we highlight important areas of future technical and conceptual progress and discuss research topics in the rapidly growing field of palaeogenomics.}, language = {en} } @article{HofreiterPaijmansGoodchildetal.2015, author = {Hofreiter, Michael and Paijmans, Johanna L. A. and Goodchild, Helen and Speller, Camilla F. and Barlow, Axel and Gonz{\´a}lez-Fortes, Gloria M. and Thomas, Jessica A. and Ludwig, Arne and Collins, Matthew J.}, title = {The future of ancient DNA: Technical advances and conceptual shifts}, series = {Bioessays : ideas that push the boundaries}, volume = {37}, journal = {Bioessays : ideas that push the boundaries}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0265-9247}, doi = {10.1002/bies.201400160}, pages = {284 -- 293}, year = {2015}, abstract = {Technological innovations such as next generation sequencing and DNA hybridisation enrichment have resulted in multi-fold increases in both the quantity of ancient DNA sequence data and the time depth for DNA retrieval. To date, over 30 ancient genomes have been sequenced, moving from 0.7x coverage (mammoth) in 2008 to more than 50x coverage (Neanderthal) in 2014. Studies of rapid evolutionary changes, such as the evolution and spread of pathogens and the genetic responses of hosts, or the genetics of domestication and climatic adaptation, are developing swiftly and the importance of palaeogenomics for investigating evolutionary processes during the last million years is likely to increase considerably. However, these new datasets require new methods of data processing and analysis, as well as conceptual changes in interpreting the results. In this review we highlight important areas of future technical and conceptual progress and discuss research topics in the rapidly growing field of palaeogenomics.}, language = {en} }