@phdthesis{Muench2021, author = {M{\"u}nch, Steffen}, title = {The relevance of the aeolian transport path for the spread of antibiotic-resistant bacteria on arable fields}, doi = {10.25932/publishup-53608}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-536089}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 140}, year = {2021}, abstract = {The spread of antibiotic-resistant bacteria poses a globally increasing threat to public health care. The excessive use of antibiotics in animal husbandry can develop resistances in the stables. Transmission through direct contact with animals and contamination of food has already been proven. The excrements of the animals combined with a binding material enable a further potential path of spread into the environment, if they are used as organic manure in agricultural landscapes. As most of the airborne bacteria are attached to particulate matter, the focus of the work will be the atmospheric dispersal via the dust fraction. Field measurements on arable lands in Brandenburg, Germany and wind erosion studies in a wind tunnel were conducted to investigate the risk of a potential atmospheric dust-associated spread of antibiotic-resistant bacteria from poultry manure fertilized agricultural soils. The focus was to (i) characterize the conditions for aerosolization and (ii) qualify and quantify dust emissions during agricultural operations and wind erosion. PM10 (PM, particulate matter with an aerodynamic diameter smaller than 10 µm) emission factors and bacterial fluxes for poultry manure application and incorporation have not been previously reported before. The contribution to dust emissions depends on the water content of the manure, which is affected by the manure pretreatment (fresh, composted, stored, dried), as well as by the intensity of manure spreading from the manure spreader. During poultry manure application, PM10 emission ranged between 0.05 kg ha-1 and 8.37 kg ha-1. For comparison, the subsequent land preparation contributes to 0.35 - 1.15 kg ha-1 of PM10 emissions. Manure particles were still part of dust emissions but they were accounted to be less than 1\% of total PM10 emissions due to the dilution of poultry manure in the soil after manure incorporation. Bacterial emissions of fecal origin were more relevant during manure application than during the subsequent manure incorporation, although PM10 emissions of manure incorporation were larger than PM10 emissions of manure application for the non-dried manure variants. Wind erosion leads to preferred detachment of manure particles from sandy soils, when poultry manure has been recently incorporated. Sorting effects were determined between the low-density organic particles of manure origin and the soil particles of mineral origin close above the threshold of 7 m s-1. In dependence to the wind speed, potential erosion rates between 101 and 854 kg ha-1 were identified, if 6 t ha-1 of poultry manure were applied. Microbial investigation showed that manure bacteria got detached more easily from the soil surface during wind erosion, due to their attachment on manure particles. Although antibiotic-resistant bacteria (ESBL-producing E. coli) were still found in the poultry barns, no further contamination could be detected with them in the manure, fertilized soils or in the dust generated by manure application, land preparation or wind erosion. Parallel studies of this project showed that storage of poultry manure for a few days (36 - 72 h) is sufficient to inactivate ESBL-producing E. coli. Further antibiotic-resistant bacteria, i.e. MRSA and VRE, were only found sporadically in the stables and not at all in the dust. Therefore, based on the results of this work, the risk of a potential infection by dust-associated antibiotic-resistant bacteria can be considered as low.}, language = {en} }