@article{MoldenhawerMorenoSchindleretal.2022, author = {Moldenhawer, Ted and Moreno, Eduardo and Schindler, Daniel and Flemming, Sven and Holschneider, Matthias and Huisinga, Wilhelm and Alonso, Sergio and Beta, Carsten}, title = {Spontaneous transitions between amoeboid and keratocyte-like modes of migration}, series = {Frontiers in Cell and Developmental Biology}, volume = {10}, journal = {Frontiers in Cell and Developmental Biology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-634X}, doi = {10.3389/fcell.2022.898351}, pages = {13}, year = {2022}, abstract = {The motility of adherent eukaryotic cells is driven by the dynamics of the actin cytoskeleton. Despite the common force-generating actin machinery, different cell types often show diverse modes of locomotion that differ in their shape dynamics, speed, and persistence of motion. Recently, experiments in Dictyostelium discoideum have revealed that different motility modes can be induced in this model organism, depending on genetic modifications, developmental conditions, and synthetic changes of intracellular signaling. Here, we report experimental evidence that in a mutated D. discoideum cell line with increased Ras activity, switches between two distinct migratory modes, the amoeboid and fan-shaped type of locomotion, can even spontaneously occur within the same cell. We observed and characterized repeated and reversible switchings between the two modes of locomotion, suggesting that they are distinct behavioral traits that coexist within the same cell. We adapted an established phenomenological motility model that combines a reaction-diffusion system for the intracellular dynamics with a dynamic phase field to account for our experimental findings.}, language = {en} } @misc{AlonsoStangeBeta2018, author = {Alonso, Sergio and Stange, Maike and Beta, Carsten}, title = {Modeling random crawling, membrane deformation and intracellular polarity of motile amoeboid cells}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1014}, issn = {1866-8372}, doi = {10.25932/publishup-45974}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459745}, pages = {24}, year = {2018}, abstract = {Amoeboid movement is one of the most widespread forms of cell motility that plays a key role in numerous biological contexts. While many aspects of this process are well investigated, the large cell-to-cell variability in the motile characteristics of an otherwise uniform population remains an open question that was largely ignored by previous models. In this article, we present a mathematical model of amoeboid motility that combines noisy bistable kinetics with a dynamic phase field for the cell shape. To capture cell-to-cell variability, we introduce a single parameter for tuning the balance between polarity formation and intracellular noise. We compare numerical simulations of our model to experiments with the social amoeba Dictyostelium discoideum. Despite the simple structure of our model, we found close agreement with the experimental results for the center-of-mass motion as well as for the evolution of the cell shape and the overall intracellular patterns. We thus conjecture that the building blocks of our model capture essential features of amoeboid motility and may serve as a starting point for more detailed descriptions of cell motion in chemical gradients and confined environments.}, language = {en} }