@phdthesis{Eckert2022, author = {Eckert, Silvia}, title = {Trait variation in changing environments: Assessing the role of DNA methylation in non-native plant species}, doi = {10.25932/publishup-56884}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-568844}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 134, CXXX}, year = {2022}, abstract = {The increasing introduction of non-native plant species may pose a threat to local biodiversity. However, the basis of successful plant invasion is not conclusively understood, especially since these plant species can adapt to the new range within a short period of time despite impoverished genetic diversity of the starting populations. In this context, DNA methylation is considered promising to explain successful adaptation mechanisms in the new habitat. DNA methylation is a heritable variation in gene expression without changing the underlying genetic information. Thus, DNA methylation is considered a so-called epigenetic mechanism, but has been studied in mainly clonally reproducing plant species or genetic model plants. An understanding of this epigenetic mechanism in the context of non-native, predominantly sexually reproducing plant species might help to expand knowledge in biodiversity research on the interaction between plants and their habitats and, based on this, may enable more precise measures in conservation biology. For my studies, I combined chemical DNA demethylation of field-collected seed material from predominantly sexually reproducing species and rearing offsping under common climatic conditions to examine DNA methylation in an ecological-evolutionary context. The contrast of chemically treated (demethylated) plants, whose variation in DNA methylation was artificially reduced, and untreated control plants of the same species allowed me to study the impact of this mechanism on adaptive trait differentiation and local adaptation. With this experimental background, I conducted three studies examining the effect of DNA methylation in non-native species along a climatic gradient and also between climatically divergent regions. The first study focused on adaptive trait differentiation in two invasive perennial goldenrod species, Solidago canadensis sensu latu and S. gigantea AITON, along a climate gradient of more than 1000 km in length in Central Europe. I found population differences in flowering timing, plant height, and biomass in the temporally longer-established S. canadensis, but only in the number of regrowing shoots for S. gigantea. While S. canadensis did not show any population structure, I was able to identify three genetic groups along this climatic gradient in S. gigantea. Surprisingly, demethylated plants of both species showed no change in the majority of traits studied. In the subsequent second study, I focused on the longer-established goldenrod species S. canadensis and used molecular analyses to infer spatial epigenetic and genetic population differences in the same specimens from the previous study. I found weak genetic but no epigenetic spatial variation between populations. Additionally, I was able to identify one genetic marker and one epigenetic marker putatively susceptible to selection. However, the results of this study reconfirmed that the epigenetic mechanism of DNA methylation appears to be hardly involved in adaptive processes within the new range in S. canadensis. Finally, I conducted a third study in which I reciprocally transplanted short-lived plant species between two climatically divergent regions in Germany to investigate local adaptation at the plant family level. For this purpose, I used four plant families (Amaranthaceae, Asteraceae, Plantaginaceae, Solanaceae) and here I additionally compared between non-native and native plant species. Seeds were transplanted to regions with a distance of more than 600 kilometers and had either a temperate-oceanic or a temperate-continental climate. In this study, some species were found to be maladapted to their own local conditions, both in non-native and native plant species alike. In demethylated individuals of the plant species studied, DNA methylation had inconsistent but species-specific effects on survival and biomass production. The results of this study highlight that DNA methylation did not make a substantial contribution to local adaptation in the non-native as well as native species studied. In summary, my work showed that DNA methylation plays a negligible role in both adaptive trait variation along climatic gradients and local adaptation in non-native plant species that either exhibit a high degree of genetic variation or rely mainly on sexual reproduction with low clonal propagation. I was able to show that the adaptive success of these non-native plant species can hardly be explained by DNA methylation, but could be a possible consequence of multiple introductions, dispersal corridors and meta-population dynamics. Similarly, my results illustrate that the use of plant species that do not predominantly reproduce clonally and are not model plants is essential to characterize the effect size of epigenetic mechanisms in an ecological-evolutionary context.}, language = {en} } @article{EckertHerdenStiftetal.2020, author = {Eckert, Silvia and Herden, Jasmin and Stift, Marc and Joshi, Jasmin Radha and van Kleunen, Mark}, title = {Manipulation of cytosine methylation does not remove latitudinal clines in two invasive goldenrod species in Central Europe}, series = {Molecular ecology}, volume = {30}, journal = {Molecular ecology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.15722}, pages = {222 -- 236}, year = {2020}, abstract = {Invasive species frequently differentiate phenotypically in novel environments within a few generations, often even with limited genetic variation. For the invasive plants Solidago canadensis and S. gigantea, we tested whether such differentiation might have occurred through heritable epigenetic changes in cytosine methylation. In a 2-year common-garden experiment, we grew plants from seeds collected along a latitudinal gradient in their non-native Central European range to test for trait differentiation and whether differentiation disappeared when seeds were treated with the demethylation agent zebularine. Microsatellite markers revealed no population structure along the latitudinal gradient in S. canadensis, but three genetic clusters in S. gigantea. Solidago canadensis showed latitudinal clines in flowering phenology and growth. In S. gigantea, the number of clonal offspring decreased with latitude. Although zebularine had a significant effect on early growth, probably through effects on cytosine methylation, latitudinal clines remained (or even got stronger) in plants raised from seeds treated with zebularine. Thus, our experiment provides no evidence that epigenetic mechanisms by selective cytosine methylation contribute to the observed phenotypic differentiation in invasive goldenrods in Central Europe.}, language = {en} } @misc{EckertHerdenStiftetal.2020, author = {Eckert, Silvia and Herden, Jasmin and Stift, Marc and Joshi, Jasmin Radha and van Kleunen, Mark}, title = {Manipulation of cytosine methylation does not remove latitudinal clines in two invasive goldenrod species in Central Europe}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-56952}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569528}, pages = {17}, year = {2020}, abstract = {Invasive species frequently differentiate phenotypically in novel environments within a few generations, often even with limited genetic variation. For the invasive plants Solidago canadensis and S. gigantea, we tested whether such differentiation might have occurred through heritable epigenetic changes in cytosine methylation. In a 2-year common-garden experiment, we grew plants from seeds collected along a latitudinal gradient in their non-native Central European range to test for trait differentiation and whether differentiation disappeared when seeds were treated with the demethylation agent zebularine. Microsatellite markers revealed no population structure along the latitudinal gradient in S. canadensis, but three genetic clusters in S. gigantea. Solidago canadensis showed latitudinal clines in flowering phenology and growth. In S. gigantea, the number of clonal offspring decreased with latitude. Although zebularine had a significant effect on early growth, probably through effects on cytosine methylation, latitudinal clines remained (or even got stronger) in plants raised from seeds treated with zebularine. Thus, our experiment provides no evidence that epigenetic mechanisms by selective cytosine methylation contribute to the observed phenotypic differentiation in invasive goldenrods in Central Europe.}, language = {en} } @misc{SammlerKetmaierHavensteinetal.2017, author = {Sammler, Svenja and Ketmaier, Valerio and Havenstein, Katja and Krause, Ulrike and Curio, Eberhard and Tiedemann, Ralph}, title = {Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401108}, pages = {14}, year = {2017}, abstract = {Background: The Visayan Tarictic Hornbill (Penelopides panini) and the Walden's Hornbill (Aceros waldeni) are two threatened hornbill species endemic to the western islands of the Visayas that constitute - between Luzon and Mindanao - the central island group of the Philippine archipelago. In order to evaluate their genetic diversity and to support efforts towards their conservation, we analyzed genetic variation in similar to 600 base pairs (bp) of the mitochondrial control region I and at 12-19 nuclear microsatellite loci. The sampling covered extant populations, still occurring only on two islands (P. panini: Panay and Negros, A. waldeni: only Panay), and it was augmented with museum specimens of extinct populations from neighboring islands. For comparison, their less endangered (= more abundant) sister taxa, the Luzon Tarictic Hornbill (P. manillae) from the Luzon and Polillo Islands and the Writhed Hornbill (A. leucocephalus) from Mindanao Island, were also included in the study. We reconstructed the population history of the two Penelopides species and assessed the genetic population structure of the remaining wild populations in all four species. Results: Mitochondrial and nuclear data concordantly show a clear genetic separation according to the island of origin in both Penelopides species, but also unravel sporadic over-water movements between islands. We found evidence that deforestation in the last century influenced these migratory events. Both classes of markers and the comparison to museum specimens reveal a genetic diversity loss in both Visayan hornbill species, P. panini and A. waldeni, as compared to their more abundant relatives. This might have been caused by local extinction of genetically differentiated populations together with the dramatic decline in the abundance of the extant populations. Conclusions: We demonstrated a loss in genetic diversity of P. panini and A. waldeni as compared to their sister taxa P. manillae and A. leucocephalus. Because of the low potential for gene flow and population exchange across islands, saving of the remaining birds of almost extinct local populations - be it in the wild or in captivity - is particularly important to preserve the species' genetic potential.}, language = {en} } @article{StillfriedFickelBoerneretal.2017, author = {Stillfried, Milena and Fickel, J{\"o}rns and B{\"o}rner, Konstantin and Wittstatt, Ulrich and Heddergott, Mike and Ortmann, Sylvia and Kramer-Schadt, Stephanie and Frantz, Alain C.}, title = {Do cities represent sources, sinks or isolated islands for urban wild boar population structure?}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {54}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0021-8901}, doi = {10.1111/1365-2664.12756}, pages = {272 -- 281}, year = {2017}, language = {en} } @misc{BullHeurichSaveljevetal.2016, author = {Bull, James K. and Heurich, Marco and Saveljev, Alexander P. and Schmidt, Krzysztof and Fickel, J{\"o}rns and F{\"o}rster, Daniel W.}, title = {The effect of reintroductions on the genetic variability in Eurasian lynx populations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {884}, issn = {1866-8372}, doi = {10.25932/publishup-43511}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435117}, pages = {1229 -- 1234}, year = {2016}, abstract = {Over the past ~40 years, several attempts were made to reintroduce Eurasian lynx to suitable habitat within their former distribution range in Western Europe. In general, limited numbers of individuals have been released to establish new populations. To evaluate the effects of reintroductions on the genetic status of lynx populations we used 12 microsatellite loci to study lynx populations in the Bohemian-Bavarian and Vosges-Palatinian forests. Compared with autochthonous lynx populations, these two reintroduced populations displayed reduced genetic diversity, particularly the Vosges-Palatinian population. Our genetic data provide further evidence to support the status of 'endangered' and 'critically endangered' for the Bohemian-Bavarian and Vosges-Palatinian populations, respectively. Regarding conservation management, we highlight the need to limit poaching, and advocate additional translocations to bolster genetic variability.}, language = {en} } @article{TiedemannSchneiderHavensteinetal.2014, author = {Tiedemann, Ralph and Schneider, Anja R. R. and Havenstein, Katja and Blanck, Torsten and Meier, Elmar and Raffel, Martina and Zwartepoorte, Henk and Plath, Martin}, title = {New microsatellite markers allow high-resolution taxon delimitation in critically endangered Asian box turtles, genus Cuora}, series = {Salamandra : German journal of herpetology}, volume = {50}, journal = {Salamandra : German journal of herpetology}, number = {3}, publisher = {Deutsche Gesellschaft f{\"u}r Herpetologie und Terrarienkunde}, address = {Darmstadt}, issn = {0036-3375}, pages = {139 -- 146}, year = {2014}, abstract = {We isolated and characterized 16 new di- and tetranudeotide microsatellite markers for the critically endangered Asian box turtle genus Cuora, focusing on the "Cuora trifasciata" species complex. The new markers were then used to analyse genetic variability and divergence amongst five described species within this complex, namely C. aurocapitata (n = 18), C. cyclornata (n = 31), C. pani (n = 6), C. trifasciata (n = 58), and C. zhoui (n = 7). Our results support the view that all five species represent valid taxa. Within two species (C. trifasciata and C. cyclornata), two distinct morphotypes were corroborated by microsatellite divergence. For three individuals, morphologically identified as being of hybrid origin, the hybrid status was confirmed by our genetic analysis. Our results confirm the controversial species (Cuora aurocapitata, C. cyclornata) and subspecies/morphotypes (C. cyclornata meieri, C. trifasciata cf. trifasciata) to be genetically distinct, which has critical implications for conservation strategies.}, language = {en} } @article{FiorentinoManganelliGiustietal.2013, author = {Fiorentino, V. and Manganelli, Giuseppe and Giusti, Folco and Tiedemann, Ralph and Ketmaier, Valerino}, title = {A question of time the land snail Murella muralis (Gastropoda: Pulmonata) reveals constraints on past ecological speciation}, series = {Molecular ecology}, volume = {22}, journal = {Molecular ecology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.12107}, pages = {170 -- 186}, year = {2013}, abstract = {The lively debate about speciation currently focuses on the relative importance of factors driving population differentiation. While many studies are increasingly producing results on the importance of selection, little is known about the interaction between drift and selection. Moreover, there is still little knowledge on the spatial-temporal scales at which speciation occurs, that is, arrangement of habitat patches, abruptness of habitat transitions, climate and habitat changes interacting with selective forces. To investigate these questions, we quantified variation on a fine geographical scale analysing morphological (shell) and genetic data sets coupled with environmental data in the land snail Murella muralis, endemic to the Mediterranean island of Sicily. Analysis of a fragment of the mitochondrial DNA cytochrome oxidase I gene (COI) and eight nuclear microsatellite loci showed that genetic variation is highly structured at a very fine spatial scale by local palaeogeographical events and historical population dynamics. Molecular clock estimates, calibrated here specifically for Tyrrhenian land snails, provided a framework of palaeogeographical events responsible for the observed geographical variations and migration routes. Finally, we showed for the first time well-documented lines of evidence of selection in the past, which explains divergence of land snail shell shapes. We suggest that time and palaeogeographical history acted as constraints in the progress along the ecological speciation continuum. Our study shows that testing for correlation among palaeogeography, morphology and genetic data on a fine geographical scale provides information fundamental for a detailed understanding of ecological speciation processes.}, language = {en} } @article{PavesiKetmaier2013, author = {Pavesi, Laura and Ketmaier, Valerio}, title = {Patterns of genetics structuring and levels of differentiation in supralittoral talitrid amphipods - an overview}, series = {Crustaceana : international journal of crustacean research}, volume = {86}, journal = {Crustaceana : international journal of crustacean research}, number = {7-8}, publisher = {Brill}, address = {Leiden}, issn = {0011-216X}, doi = {10.1163/15685403-00003212}, pages = {890 -- 907}, year = {2013}, abstract = {Talitrids are the only family within the order Amphipoda to have colonised supralittoral and terrestrial environments. They live in a variety of settings, from sandy to rocky and pebble beaches, to river and lake banks, and to leaf litter and caves. A common feature is the absence of a planktonic larval stage to facilitate passive dispersal over long-distances. However, some species have broad distributions. Genetic studies over the past 25 years have tried to explain this apparent contradiction by assessing patterns of species genetic structuring on different geographical scales. Here, we review the molecular studies available to date and focus on the population genetics of talitrids. Most of these studies considered populations in the Mediterranean area, but also along the Atlantic coast and in Canary Island caves. From this review, the group emerges as a potential model to understand processes of dispersal and divergence in non-highly-vagile supralittoral organisms. At the same time, studies on these issues are still too restricted geographically: a worldwide scale including different regions would provide us with a better perspective on these problems.}, language = {en} } @article{TiedemannPaulusHavensteinetal.2011, author = {Tiedemann, Ralph and Paulus, Kirsten B. and Havenstein, Katja and Thorstensen, Sverrir and Petersen, Aevar and Lyngs, Peter and Milinkovitch, Michel C.}, title = {Alien eggs in duck nests brood parasitism or a help from Grandma?}, series = {Molecular ecology}, volume = {20}, journal = {Molecular ecology}, number = {15}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/j.1365-294X.2011.05158.x}, pages = {3237 -- 3250}, year = {2011}, abstract = {Intraspecific brood parasitism (IBP) is a remarkable phenomenon by which parasitic females can increase their reproductive output by laying eggs in conspecific females' nests in addition to incubating eggs in their own nest. Kin selection could explain the tolerance, or even the selective advantage, of IBP, but different models of IBP based on game theory yield contradicting predictions. Our analyses of seven polymorphic autosomal microsatellites in two eider duck colonies indicate that relatedness between host and parasitizing females is significantly higher than the background relatedness within the colony. This result is unlikely to be a by-product of relatives nesting in close vicinity, as nest distance and genetic identity are not correlated. For eider females that had been ring-marked during the decades prior to our study, our analyses indicate that (i) the average age of parasitized females is higher than the age of nonparasitized females, (ii) the percentage of nests with alien eggs increases with the age of nesting females, (iii) the level of IBP increases with the host females' age, and (iv) the number of own eggs in the nest of parasitized females significantly decreases with age. IBP may allow those older females unable to produce as many eggs as they can incubate to gain indirect fitness without impairing their direct fitness: genetically related females specialize in their energy allocation, with young females producing more eggs than they can incubate and entrusting these to their older relatives. Intraspecific brood parasitism in ducks may constitute cooperation among generations of closely related females.}, language = {en} }