@article{DubeBoeckmannRitter2022, author = {Dube, Jonas and B{\"o}ckmann, Christine and Ritter, Christoph}, title = {Lidar-Derived Aerosol Properties from Ny-{\AA}lesund, Svalbard during the MOSAiC Spring 2020}, series = {Remote sensing / Molecular Diversity Preservation International (MDPI)}, volume = {14}, journal = {Remote sensing / Molecular Diversity Preservation International (MDPI)}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs14112578}, pages = {17}, year = {2022}, abstract = {In this work, we present Raman lidar data (from a Nd:YAG operating at 355 nm, 532 nm and 1064 nm) from the international research village Ny-Alesund for the time period of January to April 2020 during the Arctic haze season of the MOSAiC winter. We present values of the aerosol backscatter, the lidar ratio and the backscatter Angstrom exponent, though the latter depends on wavelength. The aerosol polarization was generally below 2\%, indicating mostly spherical particles. We observed that events with high backscatter and high lidar ratio did not coincide. In fact, the highest lidar ratios (LR > 75 sr at 532 nm) were already found by January and may have been caused by hygroscopic growth, rather than by advection of more continental aerosol. Further, we performed an inversion of the lidar data to retrieve a refractive index and a size distribution of the aerosol. Our results suggest that in the free troposphere (above approximate to 2500 m) the aerosol size distribution is quite constant in time, with dominance of small particles with a modal radius well below 100 nm. On the contrary, below approximate to 2000 m in altitude, we frequently found gradients in aerosol backscatter and even size distribution, sometimes in accordance with gradients of wind speed, humidity or elevated temperature inversions, as if the aerosol was strongly modified by vertical displacement in what we call the "mechanical boundary layer". Finally, we present an indication that additional meteorological soundings during MOSAiC campaign did not necessarily improve the fidelity of air backtrajectories.}, language = {en} } @phdthesis{Nakoudi2021, author = {Nakoudi, Konstantina}, title = {Properties and radiative effect of aerosol and cirrus clouds over the European Arctic}, doi = {10.25932/publishup-53036}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-530366}, school = {Universit{\"a}t Potsdam}, pages = {x, 136}, year = {2021}, abstract = {Over the last decades, the rate of near-surface warming in the Arctic is at least double than elsewhere on our planet (Arctic amplification). However, the relative contribution of different feedback processes to Arctic amplification is a topic of ongoing research, including the role of aerosol and clouds. Lidar systems are well-suited for the investigation of aerosol and optically-thin clouds as they provide vertically-resolved information on fine temporal scales. Global aerosol models fail to converge on the sign of the Arctic aerosol radiative effect (ARE). In the first part of this work, the optical and microphysical properties of Arctic aerosol were characterized at case study level in order to assess the short-wave (SW) ARE. A long-range transport episode was first investigated. Geometrically similar aerosol layers were captured over three locations. Although the aerosol size distribution was different between Fram Strait(bi-modal) and Ny-{\AA}lesund (fine mono-modal), the atmospheric column ARE was similar. The latter was related to the domination of accumulation mode aerosol. Over both locations top of the atmosphere (TOA) warming was accompanied by surface cooling. Subsequently, the sensitivity of ARE was investigated with respect to different aerosol and spring-time ambient conditions. A 10\% change in the single-scattering albedo (SSA) induced higher ARE perturbations compared to a 30\% change in the aerosol extinction coefficient. With respect to ambient conditions, the ARETOA was more sensitive to solar elevation changes compared to AREsur f ace. Over dark surfaces the ARE profile was exclusively negative, while over bright surfaces a negative to positive shift occurred above the aerosol layers. Consequently, the sign of ARE can be highly sensitive in spring since this season is characterized by transitional surface albedo conditions. As the inversion of the aerosol microphysics is an ill-posed problem, the inferred aerosol size distribution of a low-tropospheric event was compared to the in-situ measured distribution. Both techniques revealed a bi-modal distribution, with good agreement in the total volume concentration. However, in terms of SSA a disagreement was found, with the lidar inversion indicating highly scattering particles and the in-situ measurements pointing to absorbing particles. The discrepancies could stem from assumptions in the inversion (e.g. wavelength-independent refractive index) and errors in the conversion of the in-situ measured light attenuation into absorption. Another source of discrepancy might be related to an incomplete capture of fine particles in the in-situ sensors. The disagreement in the most critical parameter for the Arctic ARE necessitates further exploration in the frame of aerosol closure experiments. Care must be taken in ARE modelling studies, which may use either the in-situ or lidar-derived SSA as input. Reliable characterization of cirrus geometrical and optical properties is necessary for improving their radiative estimates. In this respect, the detection of sub-visible cirrus is of special importance. The total cloud radiative effect (CRE) can be negatively biased, should only the optically-thin and opaque cirrus contributions are considered. To this end, a cirrus retrieval scheme was developed aiming at increased sensitivity to thin clouds. The cirrus detection was based on the wavelet covariance transform (WCT) method, extended by dynamic thresholds. The dynamic WCT exhibited high sensitivity to faint and thin cirrus layers (less than 200 m) that were partly or completely undetected by the existing static method. The optical characterization scheme extended the Klett-Fernald retrieval by an iterative lidar ratio (LR) determination (constrained Klett). The iterative process was constrained by a reference value, which indicated the aerosol concentration beneath the cirrus cloud. Contrary to existing approaches, the aerosol-free assumption was not adopted, but the aerosol conditions were approximated by an initial guess. The inherent uncertainties of the constrained Klett were higher for optically-thinner cirrus, but an overall good agreement was found with two established retrievals. Additionally, existing approaches, which rely on aerosol-free assumptions, presented increased accuracy when the proposed reference value was adopted. The constrained Klett retrieved reliably the optical properties in all cirrus regimes, including upper sub-visible cirrus with COD down to 0.02. Cirrus is the only cloud type capable of inducing TOA cooling or heating at daytime. Over the Arctic, however, the properties and CRE of cirrus are under-explored. In the final part of this work, long-term cirrus geometrical and optical properties were investigated for the first time over an Arctic site (Ny-{\AA}lesund). To this end, the newly developed retrieval scheme was employed. Cirrus layers over Ny-{\AA}lesund seemed to be more absorbing in the visible spectral region compared to lower latitudes and comprise relatively more spherical ice particles. Such meridional differences could be related to discrepancies in absolute humidity and ice nucleation mechanisms. The COD tended to decline for less spherical and smaller ice particles probably due to reduced water vapor deposition on the particle surface. The cirrus optical properties presented weak dependence on ambient temperature and wind conditions. Over the 10 years of the analysis, no clear temporal trend was found and the seasonal cycle was not pronounced. However, winter cirrus appeared under colder conditions and stronger winds. Moreover, they were optically-thicker, less absorbing and consisted of relatively more spherical ice particles. A positive CREnet was primarily revealed for a broad range of representative cloud properties and ambient conditions. Only for high COD (above 10) and over tundra a negative CREnet was estimated, which did not hold true over snow/ice surfaces. Consequently, the COD in combination with the surface albedo seem to play the most critical role in determining the CRE sign over the high European Arctic.}, language = {en} } @article{RitterAngelesBurgosBoeckmannetal.2018, author = {Ritter, Christoph and {\´A}ngeles Burgos, Mar{\´i}a and B{\"o}ckmann, Christine and Mateos, David and Lisok, Justyna and Markowicz, Krzysztof M. and Moroni, Beatrice and Cappelletti, David and Udisti, Roberto and Maturilli, Marion and Neuber, Roland}, title = {Microphysical properties and radiative impact of an intense biomass burning aerosol event measured over Ny-angstrom lesund, Spitsbergen in July 2015}, series = {Tellus - Series B, Chemical and Physical Meteorology}, volume = {70}, journal = {Tellus - Series B, Chemical and Physical Meteorology}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1600-0889}, doi = {10.1080/16000889.2018.1539618}, pages = {23}, year = {2018}, abstract = {In this work, an evaluation of an intense biomass burning event observed over Ny-angstrom lesund (Spitsbergen, European Arctic) in July 2015 is presented. Data from the multi-wavelengths Raman-lidar KARL, a sun photometer and radiosonde measurements are used to derive some microphysical properties of the biomass burning aerosol as size distribution, refractive index and single scattering albedo at different relative humidities. Predominantly particles in the accumulation mode have been found with a bi-modal distribution and dominance of the smaller mode. Above 80\% relative humidity, hygroscopic growth in terms of an increase of particle diameter and a slight decrease of the index of refraction (real and imaginary part) has been found. Values of the single scattering albedo around 0.9 both at 355nm and 532nm indicate some absorption by the aerosol. Values of the lidar ratio are around 26sr for 355nm and around 50sr for 532nm, almost independent of the relative humidity. Further, data from the photometer and surface radiation values from the local baseline surface radiation network (BSRN) have been applied to derive the radiative impact of the biomass burning event purely from observational data by comparison with a clear background day. We found a strong cooling for the visible radiation and a slight warming in the infra-red. The net aerosol forcing, derived by comparison with a clear background day purely from observational data, obtained a value of -95 W/m(2) per unit AOD500.}, language = {en} } @phdthesis{Stock2010, author = {Stock, Maria}, title = {Charakterisierung der troposph{\"a}rischen Aerosolvariabilit{\"a}t in der europ{\"a}ischen Arktis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49203}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Auf der Grundlage von Sonnenphotometermessungen an drei Messstationen (AWIPEV/ Koldewey in Ny-{\AA}lesund (78.923 °N, 11.923 °O) 1995-2008, 35. Nordpol Driftstation - NP-35 (84.3-85.5 °N, 41.7-56.6 °O) M{\"a}rz/April 2008, Sodankyl{\"a} (67.37 °N, 26.65 °O) 2004-2007) wird die Aerosolvariabilit{\"a}t in der europ{\"a}ischen Arktis und deren Ursachen untersucht. Der Schwerpunkt liegt dabei auf der Frage des Zusammenhanges zwischen den an den Stationen gemessenen Aerosolparametern (Aerosol optische Dicke, Angstr{\"o}m Koeffizient, usw.) und dem Transport des Aerosols sowohl auf kurzen Zeitskalen (Tagen) als auch auf langen Zeitskalen (Monate, Jahre). Um diesen Zusammenhang herzustellen, werden f{\"u}r die kurzen Zeitskalen mit dem Trajektorienmodell PEP-Tracer 5-Tage R{\"u}ckw{\"a}rtstrajektorien in drei Starth{\"o}hen (850 hPa, 700 hPa, 500 hPa) f{\"u}r die Uhrzeiten 00, 06, 12 und 18 Uhr berechnet. Mit Hilfe der nicht-hierarchischen Clustermethode k-means werden die berechneten R{\"u}ckw{\"a}rtstrajektorien dann zu Gruppen zusammengefasst und bestimmten Quellgebieten und den gemessenen Aerosol optischen Dicken zugeordnet. Die Zuordnung von Aerosol optischer Dicke und Quellregion ergibt keinen eindeutigen Zusammenhang zwischen dem Transport verschmutzter Luftmassen aus Europa oder Russland bzw. Asien und erh{\"o}hter Aerosol optischer Dicke. Dennoch ist f{\"u}r einen konkreten Einzelfall (M{\"a}rz 2008) ein direkter Zusammenhang von Aerosoltransport und hohen Aerosol optischen Dicken nachweisbar. In diesem Fall gelangte Waldbrandaerosol aus S{\"u}dwestrussland in die Arktis und konnte sowohl auf der NP-35 als auch in Ny-{\AA}lesund beobachtet werden. In einem weiteren Schritt wird mit Hilfe der EOF-Analyse untersucht, inwieweit großskalige atmosph{\"a}rische Zirkulationsmuster f{\"u}r die Aerosolvariabilit{\"a}t in der europ{\"a}ischen Arktis verantwortlich sind. {\"A}hnlich wie bei der Trajektorienanalyse ist auch die Verbindung der atmosph{\"a}rischen Zirkulation zu den Photometermessungen an den Stationen in der Regel nur schwach ausgepr{\"a}gt. Eine Ausnahme findet sich bei der Betrachtung des Jahresganges des Bodendruckes und der Aerosol optischen Dicke. Hohe Aerosol optische Dicken treten im Fr{\"u}hjahr zum einen dann auf, wenn durch das Islandtief und das sibirische Hochdruckgebiet Luftmassen aus Europa oder Russland/Asien in die Arktis gelangen, und zum anderen, wenn sich ein kr{\"a}ftiges Hochdruckgebiet {\"u}ber Gr{\"o}nland und weiten Teilen der Arktis befindet. Ebenso zeigt sich, dass der {\"U}bergang zwischen Fr{\"u}hjahr und Sommer zumindest teilweise bedingt ist durch denWechsel vom stabilen Polarhoch im Winter und Fr{\"u}hjahr zu einer st{\"a}rker von Tiefdruckgebieten bestimmten arktischen Atmosph{\"a}re im Sommer. Die geringere Aerosolkonzentration im Sommer kann zum Teil mit einer Zunahme der nassen Deposition als Aerosolsenke begr{\"u}ndet werden. F{\"u}r Ny-{\AA}lesund wird neben den Transportmustern auch die chemische Zusammensetzung des Aerosols mit Hilfe von Impaktormessungen an der Zeppelinstation auf dem Zeppelinberg (474m {\"u}.NN) nahe Ny-{\AA}lesund abgeleitet. Dabei ist die positive Korrelation der Aerosoloptischen Dicke mit der Konzentration von Sulfationen und Ruß sehr deutlich. Beide Stoffe gelangen zu einem Großteil durch anthropogene Emissionen in die Atmosph{\"a}re. Die damit nachweisbar anthropogen gepr{\"a}gte Zusammensetzung des arktischen Aerosols steht im Widerspruch zum nicht eindeutig herstellbaren Zusammenhang mit dem Transport des Aerosols aus Industrieregionen. Dies kann nur durch einen oder mehrere gleichzeitig stattfindende Transformationsprozesse (z. B. Nukleation von Schwefels{\"a}urepartikeln) w{\"a}hrend des Transportes aus den Quellregionen (Europa, Russland) erkl{\"a}rt werden.}, language = {de} }