@article{JordanFechlerXuetal.2015, author = {Jordan, Thomas and Fechler, Nina and Xu, Jingsan and Brenner, Thomas J. K. and Antonietti, Markus and Shalom, Menny}, title = {"Caffeine Doping" of Carbon/Nitrogen-Based Organic Catalysts: Caffeine as a Supramolecular Edge Modifier for the Synthesis of Photoactive Carbon Nitride Tubes}, series = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, volume = {7}, journal = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, number = {18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1867-3880}, doi = {10.1002/cctc.201500343}, pages = {2826 -- 2830}, year = {2015}, abstract = {An alternative method for the structure tuning of carbon nitride materials by using a supramolecular approach in combination with caffeine as lining-agent is described. The self-assembly of the precursor complex consisting of melamine and cyanuric acid can be controlled by this doping molecule in terms of morphology, electronic, and photophysical properties. Caffeine is proposed to insert as an edge-molecule eventually leading to hollow tube-like carbon nitride structures with improved efficiency of charge formation. Compared to the bulk carbon nitride, the caffeine-doped analogue possesses a higher photocatalytic activity for the degradation of rhodamineB dye. Furthermore, this approach is also shown to be suitable for the modification of carbon nitride electrodes.}, language = {en} } @article{LiebigSarhanPrietzeletal.2016, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Reinecke, Antje and Koetz, Joachim}, title = {"Green" gold nanotriangles: synthesis, purification by polyelectrolyte/micelle depletion flocculation and performance in surface-enhanced Raman scattering}, series = {RSC Advances}, volume = {6}, journal = {RSC Advances}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c6ra04808k}, pages = {33561 -- 33568}, year = {2016}, abstract = {The aim of this study was to develop a one-step synthesis of gold nanotriangles (NTs) in the presence of mixed phospholipid vesicles followed by a separation process to isolate purified NTs. Negatively charged vesicles containing AOT and phospholipids, in the absence and presence of additional reducing agents (polyampholytes, polyanions or low molecular weight compounds), were used as a template phase to form anisotropic gold nanoparticles. Upon addition of the gold chloride solution, the nucleation process is initiated and both types of particles, i.e., isotropic spherical and anisotropic gold nanotriangles, are formed simultaneously. As it was not possible to produce monodisperse nanotriangles with such a one-step procedure, the anisotropic nanoparticles needed to be separated from the spherical ones. Therefore, a new type of separation procedure using combined polyelectrolyte/micelle depletion flocculation was successfully applied. As a result of the different purification steps, a green colored aqueous dispersion was obtained containing highly purified, well-defined negatively charged flat nanocrystals with a platelet thickness of 10 nm and an edge length of about 175 nm. The NTs produce promising results in surface-enhanced Raman scattering.}, language = {en} } @article{MikelskisHorn2000, author = {Mikelskis, Helmut and Horn, Martin Erik}, title = {"Holographie" als Thema im Physikunterricht}, isbn = {3-88064-294-X}, year = {2000}, language = {de} } @misc{SadovnichiiPanasyukAmelyushkinetal.2017, author = {Sadovnichii, V. A. and Panasyuk, M. I. and Amelyushkin, A. M. and Bogomolov, V. V. and Benghin, V. V. and Garipov, G. K. and Kalegaev, V. V. and Klimov, P. A. and Khrenov, B. A. and Petrov, V. L. and Sharakin, S. A. and Shirokov, A. V. and Svertilov, S. I. and Zotov, M. Y. and Yashin, I. V. and Gorbovskoy, E. S. and Lipunov, V. M. and Park, I. H. and Lee, J. and Jeong, S. and Kim, M. B. and Jeong, H. M. and Shprits, Yuri and Angelopoulos, V. and Russell, C. T. and Runov, A. and Turner, D. and Strangeway, R. J. and Caron, R. and Biktemerova, S. and Grinyuk, A. and Lavrova, M. and Tkachev, L. and Tkachenko, A. and Martinez, O. and Salazar, H. and Ponce, E.}, title = {"Lomonosov" Satellite-Space Observatory to Study Extreme Phenomena in Space}, series = {Space science reviews}, volume = {212}, journal = {Space science reviews}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-017-0425-x}, pages = {1705 -- 1738}, year = {2017}, abstract = {The "Lomonosov" space project is lead by Lomonosov Moscow State University in collaboration with the following key partners: Joint Institute for Nuclear Research, Russia, University of California, Los Angeles (USA), University of Pueblo (Mexico), Sungkyunkwan University (Republic of Korea) and with Russian space industry organi-zations to study some of extreme phenomena in space related to astrophysics, astroparticle physics, space physics, and space biology. The primary goals of this experiment are to study: -Ultra-high energy cosmic rays (UHECR) in the energy range of the Greizen-ZatsepinKuzmin (GZK) cutoff; -Ultraviolet (UV) transient luminous events in the upper atmosphere; -Multi-wavelength study of gamma-ray bursts in visible, UV, gamma, and X-rays; -Energetic trapped and precipitated radiation (electrons and protons) at low-Earth orbit (LEO) in connection with global geomagnetic disturbances; -Multicomponent radiation doses along the orbit of spacecraft under different geomagnetic conditions and testing of space segments of optical observations of space-debris and other space objects; -Instrumental vestibular-sensor conflict of zero-gravity phenomena during space flight. This paper is directed towards the general description of both scientific goals of the project and scientific equipment on board the satellite. The following papers of this issue are devoted to detailed descriptions of scientific instruments.}, language = {en} } @article{OdziomekGiustoKossmannetal.2022, author = {Odziomek, Mateusz and Giusto, Paolo and Kossmann, Janina and Tarakina, Nadezda and Heske, Julian and Rivadeneira, Salvador M. and Keil, Waldemar and Schmidt, Claudia and Mazzanti, Stefano and Savateev, Oleksandr and Perdigon-Toro, Lorena and Neher, Dieter and K{\"u}hne, Thomas D. and Antonietti, Markus and Lopez-Salas, Nieves}, title = {"Red Carbon": a rediscovered covalent crystalline semiconductor}, series = {Advanced materials}, volume = {34}, journal = {Advanced materials}, number = {40}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.202206405}, pages = {13}, year = {2022}, abstract = {Carbon suboxide (C3O2) is a unique molecule able to polymerize spontaneously into highly conjugated light-absorbing structures at temperatures as low as 0 degrees C. Despite obvious advantages, little is known about the nature and the functional properties of this carbonaceous material. In this work, the aim is to bring "red carbon," a forgotten polymeric semiconductor, back to the community's attention. A solution polymerization process is adapted to simplify the synthesis and control the structure. This allows one to obtain this crystalline covalent material at low temperatures. Both spectroscopic and elemental analyses support the chemical structure represented as conjugated ladder polypyrone ribbons. Density functional theory calculations suggest a crystalline structure of AB stacks of polypyrone ribbons and identify the material as a direct bandgap semiconductor with a medium bandgap that is further confirmed by optical analysis. The material shows promising photocatalytic performance using blue light. Moreover, the simple condensation-aromatization route described here allows the straightforward fabrication of conjugated ladder polymers and can be inspiring for the synthesis of carbonaceous materials at low temperatures in general.}, language = {en} } @article{ChenSavateevPronkinetal.2017, author = {Chen, Zupeng and Savateev, Aleksandr and Pronkin, Sergey and Papaefthimiou, Vasiliki and Wolff, Christian Michael and Willinger, Marc Georg and Willinger, Elena and Neher, Dieter and Antonietti, Markus and Dontsova, Dariya}, title = {"The Easier the Better" Preparation of Efficient Photocatalysts-Metastable Poly(heptazine imide) Salts}, series = {Advanced materials}, volume = {29}, journal = {Advanced materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201700555}, pages = {21800 -- 21806}, year = {2017}, abstract = {Cost-efficient, visible-light-driven hydrogen production from water is an attractive potential source of clean, sustainable fuel. Here, it is shown that thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size. The chemical structure of the prepared salts is confirmed by the results of X-ray photoelectron and infrared spectroscopies, powder X-ray diffraction and electron microscopy studies, and, in the case of sodium poly(heptazine imide), additionally by atomic pair distribution function analysis and 2D powder X-ray diffraction pattern simulations. In contrast, reactions with LiCl yield thermodynamically stable poly(triazine imides). Owing to the metastability and high structural order, the obtained heptazine imide salts are found to be highly active photo-catalysts in Rhodamine B and 4-chlorophenol degradation, and Pt-assisted sacrificial water reduction reactions under visible light irradiation. The measured hydrogen evolution rates are up to four times higher than those provided by a benchmark photocatalyst, mesoporous graphitic carbon nitride. Moreover, the products are able to photocatalytically reduce water with considerable reaction rates, even when glycerol is used as a sacrificial hole scavenger.}, language = {en} } @article{HenkelGardinerNegretti2004, author = {Henkel, Carsten and Gardiner, Simon A. and Negretti, Antonio}, title = {(De)coherence physics with condensates in microtraps}, issn = {1054-660X}, year = {2004}, abstract = {We discuss the dynamics of a condensate in a miniaturized electromagnetic trap formed above a microstructured substrate. Recent experiments have found that trap lifetimes get reduced when approaching the substrate because atoms couple to thermally excited near fields. The data agree quantitatively with our theory [Appl. Phys. B 69, 379 (1999)]. We focus on the decoherence of a quantum degenerate gas in a quasi-one-dimensional trap. Monte Carlo simulations indicate that atom interactions reduce the condensate decoherence rate. This is explained by a simple theory in terms of the suppression of long-wavelength excitations. We present preliminary simulation results for the adiabatic generation of dark solitons}, language = {en} } @article{PadeSchmidtStumpeetal.1996, author = {Pade, Sylvia and Schmidt, Hartmut and Stumpe, Joachim and Fischer, Thomas M.}, title = {(Micro-)fluorescence spectroscopy of side chain polymers with bezanilide moieties}, year = {1996}, language = {en} } @article{Gardiner2002, author = {Gardiner, Simon A.}, title = {(Quantum) chaos in Bose-Einstein condensates}, issn = {0950-0340}, year = {2002}, language = {de} } @article{MikatFrancoRegensteinetal.2000, author = {Mikat, J{\"u}rgen E. R. and Franco, Olga and Regenstein, Wolfgang and Reck, G{\"u}nter and Knochenhauer, Gerald and Schulz, Burkhard and Orgzall, Ingo}, title = {1,3,4-oxadiazole crystals under high pressure-phase transitions and properties}, year = {2000}, language = {en} } @article{EichlerHaaseMenzel1995, author = {Eichler, Hans Joachim and Haase, Alfred and Menzel, Ralf}, title = {100 watt average output power 1.2*diffraction limited beam from pulsed neodym single rod amplifier with SBS- phaseconjugation}, year = {1995}, language = {en} } @misc{SchulzeBettBivouretal.2020, author = {Schulze, Patricia S. C. and Bett, Alexander J. and Bivour, Martin and Caprioglio, Pietro and Gerspacher, Fabian M. and Kabakl{\i}, {\"O}zde Ş. and Richter, Armin and Stolterfoht, Martin and Zhang, Qinxin and Neher, Dieter and Hermle, Martin and Hillebrecht, Harald and Glunz, Stefan W. and Goldschmidt, Jan Christoph}, title = {25.1\% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {7}, issn = {1866-8372}, doi = {10.25932/publishup-52566}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525668}, pages = {12}, year = {2020}, abstract = {Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10\% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80\% and up to 25.1\% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3\% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30\% tandem efficiency in the near future.}, language = {en} } @article{SchulzeBettBivouretal.2020, author = {Schulze, Patricia S. C. and Bett, Alexander J. and Bivour, Martin and Caprioglio, Pietro and Gerspacher, Fabian M. and Kabakl{\i}, {\"O}zde Ş. and Richter, Armin and Stolterfoht, Martin and Zhang, Qinxin and Neher, Dieter and Hermle, Martin and Hillebrecht, Harald and Glunz, Stefan W. and Goldschmidt, Jan Christoph}, title = {25.1\% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {7}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {10}, year = {2020}, abstract = {Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10\% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80\% and up to 25.1\% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3\% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30\% tandem efficiency in the near future.}, language = {en} } @article{OstermeyerHeuerMenzel1998, author = {Ostermeyer, Martin and Heuer, Axel and Menzel, Ralf}, title = {27 Watt average output power with 1.2*DL beam quality from a single rod Nd:YAG-Laser with phase conjugating SBS- mirror}, year = {1998}, language = {en} } @phdthesis{vonRekowski1999, author = {von Rekowski, Matthias}, title = {2D-Akkretionsscheibenmodelle mit dynamoerregten Magnetfeldern}, address = {Potsdam}, pages = {ii, 87 S. : graph. Darst.}, year = {1999}, language = {de} } @article{EvansvanLoonHainichetal.2015, author = {Evans, Chris J. and van Loon, Jacco Th. and Hainich, Rainer and Bailey, M.}, title = {2dF-AAOmega spectroscopy of massive stars in the Magellanic Clouds The north-eastern region of the Large Magellanic Cloud}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {584}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201525882}, pages = {19}, year = {2015}, abstract = {We present spectral classifications from optical spectroscopy of 263 massive stars in the north-eastern region of the Large Magellanic Cloud. The observed two-degree field includes the massive 30 Doradus star-forming region, the environs of SN1987A, and a number of star-forming complexes to the south of 30 Dor. These are the first classifications for the majority (203) of the stars and include eleven double-lined spectroscopic binaries. The sample also includes the first examples of early OC-type spectra (AA Omega 30 Dor 248 and 280), distinguished by the weakness of their nitrogen spectra and by C IV lambda 4658 emission. We propose that these stars have relatively unprocessed CNO abundances compared to morphologically normal O-type stars, indicative of an earlier evolutionary phase. From analysis of observations obtained on two consecutive nights, we present radial-velocity estimates for 233 stars, finding one apparent single-lined binary and nine (>3 sigma) outliers compared to the systemic velocity; the latter objects could be runaway stars or large-amplitude binary systems and further spectroscopy is required to investigate their nature.}, language = {en} } @article{OstermeyerMenzel1997, author = {Ostermeyer, Martin and Menzel, Ralf}, title = {34 Watt flash lamp pumped single rod ND:YAG laser with 1.2 * DL beam quality via special resonator design}, year = {1997}, language = {en} } @phdthesis{Ehrig2017, author = {Ehrig, Sebastian}, title = {3D curvature and its role on tissue organization}, school = {Universit{\"a}t Potsdam}, pages = {132}, year = {2017}, abstract = {Shape change is a fundamental process occurring in biological tissues during embryonic development and regeneration of tissues and organs. This process is regulated by cells that are constrained within a complex environment of biochemical and physical cues. The spatial constraint due to geometry has a determining role on tissue mechanics and the spatial distribution of force patterns that, in turn, influences the organization of the tissue structure. An understanding of the underlying principles of tissue organization may have wide consequences for the understanding of healing processes and the development of organs and, as such, is of fundamental interest for the tissue engineering community. This thesis aims to further our understanding of how the collective behaviour of cells is influenced by the 3D geometry of the environment. Previous research studying the role of geometry on tissue growth has mainly focused either on flat surfaces or on substrates where at least one of the principal curvatures is zero. In the present work, tissue growth from MC3T3-E1 pre-osteoblasts was investigated on surfaces of controlled mean curvature. One key aspect of this thesis was the development of substrates of controlled mean curvature and their visualization in 3D. It was demonstrated that substrates of controlled mean curvature suitable for cell culture can be fabricated using liquid polymers and surface tension effects. Using these substrates, it was shown that the mean surface curvature has a strong impact on the rate of tissue growth and on the organization of the tissue structure. It was thereby not only demonstrated that the amount of tissue produced (i.e. growth rates) by the cells depends on the mean curvature of the substrate but also that the tissue surface behaves like a viscous fluid with an equilibrium shape governed by the Laplace-Young-law. It was observed that more tissue was formed on highly concave surfaces compared to flat or convex surfaces. Motivated by these observations, an analytical model was developed, where the rate of tissue growth is a function of the mean curvature, which could successfully describe the growth kinetics. This model was also able to reproduce the growth kinetics of previous experiments where tissues have been cultured in straight-sided prismatic pores. A second part of this thesis focuses on the tissue structure, which influences the mechanical properties of the mature bone tissue. Since the extracellular matrix is produced by the cells, the cell orientation has a strong impact on the direction of the tissue fibres. In addition, it was recently shown that some cell types exhibit collective alignment similar to liquid crystals. Based on this observation, a computational model of self-propelled active particles was developed to explore in an abstract manner how the collective behaviour of cells is influenced by 3D curvature. It was demonstrated that the 3D curvature has a strong impact on the self-organization of active particles and gives, therefore, first insights into the principles of self-organization of cells on curved surfaces.}, language = {en} } @article{PhamPetreBerquezetal.2009, author = {Pham, Cong Duc and Petre, Anca and Berquez, Laurent and Flores Su{\´a}rez, Rosaura and Mellinger, Axel and Wirges, Werner and Gerhard, Reimund}, title = {3D high-resolution mapping of polarization profiles in thin poly(vinylidenefluoride-trifluoroethylene) (PVDF- TrFE) films using two thermal techniques}, issn = {1070-9878}, doi = {10.1109/TDEI.2009.5128505}, year = {2009}, abstract = {In this paper, two non-destructive thermal methods are used in order to determine, with a high degree of accuracy, three-dimensional polarization distributions in thin films (12 mu m) of poly(vinylidenefluoride- trifluoroethylene) (PVDF-TrFE). The techniques are the frequency-domain Focused Laser Intensity Modulation Method (FLIMM) and time-domain Thermal-Pulse Tomography (TPT). Samples were first metalized with grid-shaped electrode and poled. 3D polarization mapping yielded profiles which reproduce the electrode-grid shape. The polarization is not uniform across the sample thickness. Significant polarization values are found only at depths beyond 0.5 mu m from the sample surface. Both methods provide similar results, TPT method being faster, whereas the FLIMM technique has a better lateral resolution.}, language = {en} } @article{MaduraClementelGulletal.2015, author = {Madura, T. I. and Clementel, N. and Gull, T. R. and Kruip, C. J. H. and Paardekooper, J.-P. and Icke, V.}, title = {3D hydrodynamical and radiative transfer modeling of η Carinae's colliding winds}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87930}, pages = {163 -- 166}, year = {2015}, abstract = {We present results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system η Carinae. We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We investigate several computational domain sizes and Luminous Blue Variable primary star mass-loss rates. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing. While we initially focus on η Car, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty `pinwheel' (WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where various observed time-variable emission and absorption lines form in these unique objects.}, language = {en} } @misc{KubatovaHamannKubatetal.2019, author = {Kubatova, Brankica and Hamann, Wolf-Rainer and Kubat, Jiri and Oskinova, Lidia M.}, title = {3D Monte Carlo Radiative Transfer in Inhomogeneous Massive Star Winds}, series = {Radiative signatures from the cosmos}, volume = {519}, journal = {Radiative signatures from the cosmos}, publisher = {Astronomical soc pacific}, address = {San Fransisco}, isbn = {978-1-58381-925-8}, issn = {1050-3390}, pages = {209 -- 212}, year = {2019}, abstract = {Already for decades it has been known that the winds of massive stars are inhomogeneous (i.e. clumped). To properly model observed spectra of massive star winds it is necessary to incorporate the 3-D nature of clumping into radiative transfer calculations. In this paper we present our full 3-D Monte Carlo radiative transfer code for inhomogeneous expanding stellar winds. We use a set of parameters to describe dense as well as the rarefied wind components. At the same time, we account for non-monotonic velocity fields. We show how the 3-D density and velocity wind inhomogeneities strongly affect the resonance line formation. We also show how wind clumping can solve the discrepancy between P v and H alpha mass-loss rate diagnostics.}, language = {en} } @article{ReyesIturbideVelazquezRosado2015, author = {Reyes-Iturbide, J. and Vel{\´a}zquez, Pablo F. and Rosado, M.}, title = {3D numerical model for NGC 6888 Nebula}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88485}, pages = {363}, year = {2015}, abstract = {We present 3D numerical simulations of the NGC6888 nebula considering the proper motion and the evolution of the star, from the red supergiant (RSG) to the Wolf-Rayet (WR) phase. Our simulations reproduce the limb-brightened morphology observed in [OIII] and X-ray emission maps. The synthetic maps computed by the numerical simulations show filamentary and clumpy structures produced by instabilities triggered in the interaction between the WR wind and the RSG shell.}, language = {en} } @article{ThompsonKliemToeroek2012, author = {Thompson, W. T. and Kliem, Bernhard and Toeroek, Tibor}, title = {3D reconstruction of a rotating erupting prominence}, series = {Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics}, volume = {276}, journal = {Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics}, number = {1-2}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-0938}, doi = {10.1007/s11207-011-9868-5}, pages = {241 -- 259}, year = {2012}, abstract = {A bright prominence associated with a coronal mass ejection (CME) was seen erupting from the Sun on 9 April 2008. This prominence was tracked by both the Solar Terrestrial Relations Observatory (STEREO) EUVI and COR1 telescopes, and was seen to rotate about the line of sight as it erupted; therefore, the event has been nicknamed the "Cartwheel CME." The threads of the prominence in the core of the CME quite clearly indicate the structure of a weakly to moderately twisted flux rope throughout the field of view, up to heliocentric heights of 4 solar radii. Although the STEREO separation was 48A degrees, it was possible to match some sharp features in the later part of the eruption as seen in the 304 line in EUVI and in the H alpha-sensitive bandpass of COR1 by both STEREO Ahead and Behind. These features could then be traced out in three-dimensional space, and reprojected into a view in which the eruption is directed toward the observer. The reconstructed view shows that the alignment of the prominence to the vertical axis rotates as it rises up to a leading-edge height of a parts per thousand aEuro parts per thousand 2.5 solar radii, and then remains approximately constant. The alignment at 2.5 solar radii differs by about 115A degrees from the original filament orientation inferred from H alpha and EUV data, and the height profile of the rotation, obtained here for the first time, shows that two thirds of the total rotation are reached within a parts per thousand aEuro parts per thousand 0.5 solar radii above the photosphere. These features are well reproduced by numerical simulations of an unstable moderately twisted flux rope embedded in external flux with a relatively strong shear field component.}, language = {en} } @phdthesis{Schmoll2001, author = {Schmoll, J{\"u}rgen}, title = {3D-Spektrofotometrie extragalaktischer Emissionslinienobjekte}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000372}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {Popul{\"a}rwissenschaftlicher Abstract: Bislang gibt es in der beobachtenden optischen Astronomie zwei verschiedene Herangehensweisen: Einerseits werden Objekte durch Kameras abbildend erfaßt, andererseits werden durch die wellenl{\"a}ngenabh{\"a}ngige Zerlegung ihres Lichtes Spektren gewonnen. Das Integral - Field - Verfahren ist eine relativ neue Technik, welche die genannten Beobachtungsmethoden vereint. Das Objektbild im Teleskopfokus wird in r{\"a}umlich zerlegt und jedes Ortselement einem gemeinsamen Spektrografen zugef{\"u}hrt. Hierdurch wird das Objekt nicht nur zweidimensional r{\"a}umlich erfaßt, sondern zus{\"a}tzlich die spektrale Kompenente als dritte Dimension erhalten, weswegen das Verfahren auch als 3D-Methode bezeichnet wird. Anschaulich kann man sich das Datenresultat als eine Abbildung vorstellen, in der jeder einzelne Bildpunkt nicht mehr nur einen Intensit{\"a}tswert enth{\"a}lt, sondern gleich ein ganzes Spektrum. Diese Technik erm{\"o}glicht es, ausgedehnte Objekte im Unterschied zu g{\"a}ngigen Spaltspektrografen komplett zu erfassen. Die besondere St{\"a}rke der Methode ist die M{\"o}glichkeit, die Hintergrundkontamination der unmittelbaren Umgebung des Objektes zu erfassen und in der Auswertung zu ber{\"u}cksichtigen. Durch diese F{\"a}higkeit erscheint die 3D-Methode pr{\"a}destiniert f{\"u}r den durch moderne Großteleskope erschlossenen Bereich der extragalaktischen Stellarastronomie. Die detaillierte Untersuchung aufgel{\"o}ster stellare Populationen in nahegelegenen Galaxien ist erst seit kurzer Zeit dank der Fortschritte mit modernen Grossteleskopen und fortschrittlicher Instrumentierung m{\"o}glich geworden. Wegen der Bedeutung f{\"u}r die Entstehung und Evolution von Galaxien werden diese Arbeiten zuk{\"u}nftig weiter an Bedeutung gewinnen. In der vorliegenden Arbeit wurde die Integral-Field-Spektroskopie an zwei planetarischen Nebeln in der n{\"a}chstgelegenen großen Spiralgalaxie M31 (NGC 224) getestet, deren Helligkeiten und Koordinaten aus einer Durchmusterung vorlagen. Hierzu wurden Beobachtungen mit dem MPFS-Instrument am russischen 6m - Teleskop in Selentschuk/Kaukasus sowie mit INTEGRAL/WYFFOS am englischen William-Herschel-Teleskop auf La Palma gewonnen. Ein {\"u}berraschendes Ergebnis war, daß eins der beiden Objekte falsch klassifiziert wurde. Sowohl die meßbare r{\"a}umliche Ausdehnung des Objektes als auch das spektrale Erscheinungsbild schlossen die Identit{\"a}t mit einem planetarischen Nebel aus. Mit hoher Wahrscheinlichkeit handelt es sich um einen Supernova{\"u}berrest, zumal im Rahmen der Fehler an gleicher Stelle eine vom R{\"o}ntgensatelliten ROSAT detektierte R{\"o}ntgenquelle liegt. Die in diesem Projekt verwendeten Integral-Field-Instrumente wiesen zwei verschiedene Bauweisen auf, die sich miteinander vergleichen ließen. Ein Hauptkritikpunkt der verwendeten Instrumente war ihre geringe Lichtausbeute. Die gesammelten Erfahrung fanden Eingang in das Konzept des derzeit in Potsdam in der Fertigung befindlichen 3D-Instruments PMAS (Potsdamer Multi - Apertur - Spektrophotometer), welcher zun{\"a}chst f{\"u}r das 3.5m-Teleskop des Calar - Alto - Observatoriums in S{\"u}dspanien vorgesehen ist. Um die Effizienz dieses Instrumentes zu verbessern, wurde in dieser Arbeit die Kopplung der zum Bildrasterung verwendeten Optik zu den Lichtleitfasern im Labor untersucht. Die Untersuchungen zur Maximierung von Lichtausbeute und Stabilit{\"a}t zeigen, daß sich die Effizienz durch Auswahl einer geeigneten Koppelmethode um etwa 20 Prozent steigern l{\"a}sst.}, language = {de} } @phdthesis{Becker2001, author = {Becker, Thomas}, title = {3D-Spektroskopie hintergrundkontaminierter Einzelobjekte in Galaxien der lokalen Gruppe}, pages = {110 S.}, year = {2001}, language = {de} } @article{OstermeyerMenzel1999, author = {Ostermeyer, Martin and Menzel, Ralf}, title = {50 Watt average output power with 1.2*DL beam quality from a single rod Nd:YALO laser with phase-conjugating SBS mirror}, year = {1999}, language = {en} } @article{Gerhard2021, author = {Gerhard, Reimund}, title = {50 years of International Symposia on Electrets from 1967 to 2017}, series = {IEEE electrical insulation magazine / Institute of Electrical and Electronics Engineers}, volume = {37}, journal = {IEEE electrical insulation magazine / Institute of Electrical and Electronics Engineers}, number = {2}, publisher = {IEEE}, address = {New York, NY}, issn = {0883-7554}, doi = {10.1109/MEI.2021.9352710}, pages = {50 -- 55}, year = {2021}, abstract = {The prehistory of electrets is not known yet, but it is quite likely that the electrostatic charging behavior of amber (Greek: τ{\`o} ηλεκτρoν, i.e., "electron") already was familiar to people in ancient cultures (China, Egypt, Greece, etc.), before the Greek philosopher and scientist Thales of Miletus (6th century BCE)-or rather his disciples and followers-reported it in writing (cf. Figure 1). More than two millennia later, William Gilbert (1544-1603), the physician of Queen Elizabeth I, coined the term "electric" in his book De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure (1600) for dielectric materials that attract like amber and that included sulfur and glass [1]. The second half of the 18th century saw the invention of the electrophorus or electrophore [2], a capacitive electret device, in 1762 by Johan Carl Wilcke (1732-1796).}, language = {en} } @book{Brehmer2020, author = {Brehmer, Ludwig}, title = {70-j{\"a}hriges-Jubil{\"a}um der Gr{\"u}ndung der Hochschul-Biologie und des Botanischen Gartens der P{\"a}dagogischen Hochschule Potsdam}, series = {Die Hochschulstadt in Sanssouci ; Band 8}, journal = {Die Hochschulstadt in Sanssouci ; Band 8}, publisher = {Eigenverlag des Verfassers Brehmer}, address = {Schwielowsee}, isbn = {978-3-9821787-3-8}, pages = {183}, year = {2020}, language = {de} } @article{KoesterkeHamann2002, author = {Koesterke, Lars and Hamann, Wolf-Rainer}, title = {[WC]-type CSPN : clumping and wind-driving}, year = {2002}, abstract = {Many Central Stars of Planetary Nebulae are very similar to massive Wolf-Rayet stars of the carbon sequence with respect to their spectra, chemical composition and wind properties. Therefore their study opens an additional way towards the understanding of the Wolf-Rayet phenomenon. While the study of Line Profile Variation will be difficult, espescially for the very compact early types, the comparision with other hydrogen-deficient Central Stars illuminates the driving mechanism of their winds. We speculate that at least two ingredients are needed. The ionization of their atmpospheres has to be stratified to enable multi-scattering processes and the amount of carbon and oxygen has to be high (more than a few percent by mass).}, language = {en} } @article{IsaevaKuznetsovSataev2012, author = {Isaeva, Olga B. and Kuznetsov, Sergey P. and Sataev, Igor R.}, title = {A "saddle-node" bifurcation scenario for birth or destruction of a Smale-Williams solenoid}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {22}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.4766590}, pages = {7}, year = {2012}, abstract = {Formation or destruction of hyperbolic chaotic attractor under parameter variation is considered with an example represented by Smale-Williams solenoid in stroboscopic Poincare map of two alternately excited non-autonomous van der Pol oscillators. The transition occupies a narrow but finite parameter interval and progresses in such way that periodic orbits constituting a "skeleton" of the attractor undergo saddle-node bifurcation events involving partner orbits from the attractor and from a non-attracting invariant set, which forms together with its stable manifold a basin boundary of the attractor.}, language = {en} } @article{SrivastavaKehrigKanthariaetal.2015, author = {Srivastava, S. and Kehrig, C. and Kantharia, N. G. and P{\´e}rez-Montero, E. and V{\´i}lchez, J. M. and Iglesias-P{\´a}ramo, J. and Janardhan, P.}, title = {A 2D view of Wolf-Rayet Galaxies}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87650}, pages = {59 -- 62}, year = {2015}, abstract = {The main objective of this work is to investigate the evolution of massive stars, and the interplay between them and the ionized gas for a sample of local metal-poor Wolf-Rayet galaxies. Optical integral field spectrocopy was used in combination with multi-wavelength radio data. Combining optical and radio data, we locate Wolf-Rayet stars and supernova remnants across the Wolf-Rayet galaxies to study the spatial correlation between them. This study will shed light on the massive star formation and its feedback, and will help us to better understand distant star-forming galaxies.}, language = {en} } @article{ThevesTaktikosZaburdaevetal.2013, author = {Theves, Matthias and Taktikos, Johannes and Zaburdaev, Vasily and Stark, Holger and Beta, Carsten}, title = {A bacterial swimmer with two alternating speeds of propagation}, series = {Biophysical journal}, volume = {105}, journal = {Biophysical journal}, number = {8}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2013.08.047}, pages = {1915 -- 1924}, year = {2013}, abstract = {We recorded large data sets of swimming trajectories of the soil bacterium Pseudomonas putida. Like other prokaryotic swimmers, P. putida exhibits a motion pattern dominated by persistent runs that are interrupted by turning events. An in-depth analysis of their swimming trajectories revealed that the majority of the turning events is characterized by an angle of phi(1) = 180 degrees (reversals). To a lesser extent, turning angles of phi(2 Sigma Sigma Sigma Sigma) = 00 are also found. Remarkably, we observed that, upon a reversal, the swimming speed changes by a factor of two on average a prominent feature of the motion pattern that, to our knowledge, has not been reported before. A theoretical model, based on the experimental values for the average run time and the rotational diffusion, recovers the mean-square displacement of P. putida if the two distinct swimming speeds are taken into account. Compared to a swimmer that moves with a constant intermediate speed, the mean-square displacement is strongly enhanced. We furthermore observed a negative dip in the directional autocorrelation at intermediate times, a feature that is only recovered in an extended model, where the nonexponential shape of the run-time distribution is taken into account.}, language = {en} } @article{RamiaramanantsoaRatnasingamShenaretal.2018, author = {Ramiaramanantsoa, Tahina and Ratnasingam, Rathish and Shenar, Tomer and Moffat, Anthony F. J. and Rogers, Tamara M. and Popowicz, Adam and Kuschnig, Rainer and Pigulski, Andrzej and Handler, Gerald and Wade, Gregg A. and Zwintz, Konstanze and Weiss, Werner W.}, title = {A BRITE view on the massive O-type supergiant V973 Scorpii}, series = {Monthly notices of the Royal Astronomical Society}, volume = {480}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1897}, pages = {972 -- 986}, year = {2018}, abstract = {Stochastically triggered photospheric light variations reaching similar to 40 mmag peak-to-valley amplitudes have been detected in the O8 Iaf supergiant V973 Scorpii as the outcome of 2 months of high-precision time-resolved photometric observations with the BRIght Target Explorer (BRITE) nanosatellites. The amplitude spectrum of the time series photometry exhibits a pronounced broad bump in the low-frequency regime (less than or similar to 0.9 d(-1)) where several prominent frequencies are detected. A time-frequency analysis of the observations reveals typical mode lifetimes of the order of 5-10 d. The overall features of the observed brightness amplitude spectrum of V973 Sco match well with those extrapolated from two-dimensional hydrodynamical simulations of convectively driven internal gravity waves randomly excited from deep in the convective cores of massive stars. An alternative or additional possible source of excitation from a sub-surface convection zone needs to be explored in future theoretical investigations.}, language = {en} } @article{MontesHofnerOskinovaetal.2020, author = {Montes, Virginie A. and Hofner, Peter and Oskinova, Lidia M. and Linz, Hendrik}, title = {A Chandra X-Ray and infrared study of the stellar population in the high-mass star-forming region IRAS 16562-3959}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {888}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {Institute of Physics Publ.}, address = {London}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab59cf}, pages = {15}, year = {2020}, abstract = {We present the results from Chandra X-ray observations, and near- and mid-infrared analysis, using VISTA/VVV and Spitzer/GLIMPSE catalogs, of the high-mass star-forming region IRAS 16562-3959, which contains a candidate for a high-mass protostar. We detected 249 X-ray sources within the ACIS-I field of view. The majority of the X-ray sources have low count rates (<0.638 cts/ks) and hard X-ray spectra. The search for YSOs in the region using VISTA/VVV and Spitzer/GLIMPSE catalogs resulted in a total of 636 YSOs, with 74 Class I and 562 Class II YSOs. The search for near- and mid-infrared counterparts of the X-ray sources led to a total of 165 VISTA/VVV counterparts, and a total of 151 Spitzer/GLIMPSE counterparts. The infrared analysis of the X-ray counterparts allowed us to identify an extra 91 Class III YSOs associated with the region. We conclude that a total of 727 YSOs are associated with the region, with 74 Class I, 562 Class II, and 91 Class III YSOs. We also found that the region is composed of 16 subclusters. In the vicinity of the high-mass protostar, the stellar distribution has a core-halo structure. The subcluster containing the high-mass protostar is the densest and the youngest in the region, and the high-mass protostar is located at its center. The YSOs in this cluster appear to be substantially older than the high-mass protostar.}, language = {en} } @article{Baumgaertel2011, author = {Baumg{\"a}rtel, Hellmut}, title = {A Characteristic decay semigroup for the resonances of trace class perturbations with analyticity conditions of semibounded hamiltonians}, series = {International journal of theoretical physic}, volume = {50}, journal = {International journal of theoretical physic}, number = {7}, publisher = {Springer}, address = {New York}, issn = {0020-7748}, doi = {10.1007/s10773-010-0533-9}, pages = {2002 -- 2008}, year = {2011}, abstract = {To asymptotic complete scattering systems {M(+) + V, M(+)} on H(+) := L(2)(R(+), K, d lambda), where M(+) is the multiplication operator on H(+) and V is a trace class operator with analyticity conditions, a decay semigroup is associated such that the spectrum of the generator of this semigroup coincides with the set of all resonances (poles of the analytic continuation of the scattering matrix into the lower half plane across the positive half line), i.e. the decay semigroup yields a "time-dependent" characterization of the resonances. As a counterpart a "spectral characterization" is mentioned which is due to the "eigenvalue-like" properties of resonances.}, language = {en} } @article{AckermannAjelloAllafortetal.2011, author = {Ackermann, Margit and Ajello, M. and Allafort, A. J. and Baldini, L. and Ballet, J. and Barbiellini, G. and Bastieri, D. and Belfiore, A. and Bellazzini, R. and Berenji, B. and Blandford, R. D. and Bloom, E. D. and Bonamente, E. and Borgland, A. W. and Bottacini, E. and Brigida, M. and Bruel, P. and Buehler, R. and Buson, S. and Caliandro, G. A. and Cameron, R. A. and Caraveo, P. A. and Casandjian, J. M. and Cecchi, C. and Chekhtman, A. and Cheung, C. C. and Chiang, J. and Ciprini, S. and Claus, R. and Cohen-Tanugi, J. and de Angelis, A. and de Palma, F. and Dermer, C. D. and do Couto e Silva, E. and Drell, P. S. and Dumora, D. and Favuzzi, C. and Fegan, S. J. and Focke, W. B. and Fortin, P. and Fukazawa, Y. and Fusco, P. and Gargano, F. and Germani, S. and Giglietto, N. and Giordano, F. and Giroletti, M. and Glanzman, T. and Godfrey, G. and Grenier, I. A. and Guillemot, L. and Guiriec, S. and Hadasch, D. and Hanabata, Y. and Harding, A. K. and Hayashida, M. and Hayashi, K. and Hays, E. and Johannesson, G. and Johnson, A. S. and Kamae, T. and Katagiri, H. and Kataoka, J. and Kerr, M. and Knoedlseder, J. and Kuss, M. and Lande, J. and Latronico, L. and Lee, S. -H. and Longo, F. and Loparco, F. and Lott, B. and Lovellette, M. N. and Lubrano, P. and Martin, P. and Mazziotta, Mario Nicola and McEnery, J. E. and Mehault, J. and Michelson, P. F. and Mitthumsiri, W. and Mizuno, T. and Monte, C. and Monzani, M. E. and Morselli, A. and Moskalenko, I. V. and Murgia, S. and Naumann-Godo, M. and Nolan, P. L. and Norris, J. P. and Nuss, E. and Ohsugi, T. and Okumura, A. and Orlando, E. and Ormes, J. F. and Ozaki, M. and Paneque, D. and Parent, D. and Pesce-Rollins, M. and Pierbattista, M. and Piron, F. and Pohl, Martin and Prokhorov, D. and Raino, S. and Rando, R. and Razzano, M. and Reposeur, T. and Ritz, S. and Parkinson, P. M. Saz and Sgro, C. and Siskind, E. J. and Smith, P. D. and Spinelli, P. and Strong, A. W. and Takahashi, H. and Tanaka, T. and Thayer, J. G. and Thayer, J. B. and Thompson, D. J. and Tibaldo, L. and Torres, D. F. and Tosti, G. and Tramacere, A. and Troja, E. and Uchiyama, Y. and Vandenbroucke, J. and Vasileiou, V. and Vianello, G. and Vitale, V. and Waite, A. P. and Wang, P. and Winer, B. L. and Wood, K. S. and Yang, Z. and Zimmer, S. and Bontemps, S.}, title = {A cocoon of freshly accelerated cosmic rays detected by fermi in the cygnus superbubble}, series = {Science}, volume = {334}, journal = {Science}, number = {6059}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1210311}, pages = {1103 -- 1107}, year = {2011}, abstract = {The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shockwaves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields. The Fermi Large Area Telescope (LAT) has observed the star-forming region of Cygnus X. The 1- to 100-gigaelectronvolt images reveal a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters. It provides an example to study the youth of cosmic rays in a superbubble environment before they merge into the older Galactic population.}, language = {en} } @article{LetoTrigilioOskinovaetal.2018, author = {Leto, Paolo and Trigilio, C. and Oskinova, Lidia M. and Ignace, R. and Buemi, C. S. and Umana, G. and Ingallinera, A. and Leone, Francesco and Phillips, N. M. and Agliozzo, Claudia and Todt, Helge Tobias and Cerrigone, L.}, title = {A combined multiwavelength VLA/ALMA/Chandra study unveils the complex magnetosphere of the B-type star HR5907}, series = {Monthly notices of the Royal Astronomical Society}, volume = {476}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty244}, pages = {562 -- 579}, year = {2018}, abstract = {We present new radio/millimeter measurements of the hot magnetic star HR5907 obtained with the VLA and ALMA interferometers. We find that HR5907 is the most radio luminous early type star in the cm-mm band among those presently known. Its multi-wavelength radio light curves are strongly variable with an amplitude that increases with radio frequency. The radio emission can be explained by the populations of the non-thermal electrons accelerated in the current sheets on the outer border of the magnetosphere of this fast-rotating magnetic star. We classify HR5907 as another member of the growing class of strongly magnetic fast-rotating hot stars where the gyro-synchrotron emission mechanism efficiently operates in their magnetospheres. The new radio observations of HR5907 are combined with archival X-ray data to study the physical condition of its magnetosphere. The X-ray spectra of HR5907 show tentative evidence for the presence of non-thermal spectral component. We suggest that non-thermal X-rays originate a stellar X-ray aurora due to streams of non-thermal electrons impacting on the stellar surface. Taking advantage of the relation between the spectral indices of the X-ray power-law spectrum and the non-thermal electron energy distributions, we perform 3-D modelling of the radio emission for HR5907. The wavelength-dependent radio light curves probe magnetospheric layers at different heights above the stellar surface. A detailed comparison between simulated and observed radio light curves leads us to conclude that the stellar magnetic field of HR 5907 is likely non-dipolar, providing further indirect evidence of the complex magnetic field topology of HR5907.}, language = {en} } @article{ZhelavskayaAseevShprits2021, author = {Zhelavskaya, Irina and Aseev, Nikita and Shprits, Yuri}, title = {A combined neural network- and physics-based approach for modeling plasmasphere dynamics}, series = {JGR / AGU, American Geographical Union. Space Physics}, volume = {126}, journal = {JGR / AGU, American Geographical Union. Space Physics}, number = {3}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2169-9380}, doi = {10.1029/2020JA028077}, pages = {30}, year = {2021}, abstract = {Abstract In recent years, feedforward neural networks (NNs) have been successfully applied to reconstruct global plasmasphere dynamics in the equatorial plane. These neural network-based models capture the large-scale dynamics of the plasmasphere, such as plume formation and erosion of the plasmasphere on the nightside. However, their performance depends strongly on the availability of training data. When the data coverage is limited or non-existent, as occurs during geomagnetic storms, the performance of NNs significantly decreases, as networks inherently cannot learn from the limited number of examples. This limitation can be overcome by employing physics-based modeling during strong geomagnetic storms. Physics-based models show a stable performance during periods of disturbed geomagnetic activity if they are correctly initialized and configured. In this study, we illustrate how to combine the neural network- and physics-based models of the plasmasphere in an optimal way by using data assimilation. The proposed approach utilizes advantages of both neural network- and physics-based modeling and produces global plasma density reconstructions for both quiet and disturbed geomagnetic activity, including extreme geomagnetic storms. We validate the models quantitatively by comparing their output to the in-situ density measurements from RBSP-A for an 18-month out-of-sample period from June 30, 2016 to January 01, 2018 and computing performance metrics. To validate the global density reconstructions qualitatively, we compare them to the IMAGE EUV images of the He+ particle distribution in the Earth's plasmasphere for a number of events in the past, including the Halloween storm in 2003.}, language = {en} } @article{WaltherWesselMalbergetal.2006, author = {Walther, T and Wessel, Niels and Malberg, Hagen and Voss, Andreas and Stepan, H and Faber, R}, title = {A combined technique for predicting pre-eclampsia : concurrent measurement of uterine perfusion and analysis of heart rate and blood pressure variability}, year = {2006}, abstract = {Objective Pre-eclampsia is a serious complication of pregnancy with high morbidity and mortality and an incidence of 3-5\% in all pregnancies. Early prediction is still insufficient in clinical practice. Although most pre- eclamptic patients have pathological uterine perfusion in the second trimester, perfusion disturbance has a positive predictive accuracy (PPA) only of approximately 30\%. Methods Non-invasive continuous blood pressure recordings were taken simultaneously via a finger cuff for 30 min. Time series of systolic as well as diastolic beat-to-beat pressure values were extracted to analyse heart rate and blood pressure variability and baroreflex sensitivity in 102 second- trimester pregnancies, to assess predictability for pre-eclampsia (n = 16). All women underwent Doppler investigations of the uterine arteries. Results We identified a combination of three variability and baroreflex parameters to best predict pre-eclampsia several weeks before clinical manifestation. The discriminant function of these three parameters classified patients with later pre-eclampsia with a sensitivity of 87.5\%, a specificity of 83.7\%, and a PPA of 50.0\%. Combined with Doppler investigations of uterine arteries, PPA increased to 71.4\%. Conclusions This technique of incorporating one-stop clinical assessment of uterine perfusion and variability parameters in the second trimester produces the most effective prediction of pre-eclampsia to date}, language = {en} } @misc{YadavalliLoebnerPapkeetal.2018, author = {Yadavalli, Nataraja Sekhar and Loebner, Sarah and Papke, Thomas and Sava, Elena and Hurduc, Nicolae and Santer, Svetlana}, title = {A comparative study of photoinduced deformation in azobenzene containing polymer films}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {458}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413510}, year = {2018}, abstract = {In this paper two groups supporting different views on the mechanism of light induced polymer deformation argue about the respective underlying theoretical conceptions, in order to bring this interesting debate to the attention of the scientific community. The group of Prof. Nicolae Hurduc supports the model claiming that the cyclic isomerization of azobenzenes may cause an athermal transition of the glassy azobenzene containing polymer into a fluid state, the so-called photo-fluidization concept. This concept is quite convenient for an intuitive understanding of the deformation process as an anisotropic flow of the polymer material. The group of Prof. Svetlana Santer supports the re-orientational model where the mass-transport of the polymer material accomplished during polymer deformation is stated to be generated by the light-induced re-orientation of the azobenzene side chains and as a consequence of the polymer backbone that in turn results in local mechanical stress, which is enough to irreversibly deform an azobenzene containing material even in the glassy state. For the debate we chose three polymers differing in the glass transition temperature, 32 °C, 87 °C and 95 °C, representing extreme cases of flexible and rigid materials. Polymer film deformation occurring during irradiation with different interference patterns is recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. We also demonstrated the unique behaviour of azobenzene containing polymeric films to switch the topography in situ and reversibly by changing the irradiation conditions. We discuss the results of reversible deformation of three polymers induced by irradiation with intensity (IIP) and polarization (PIP) interference patterns, and the light of homogeneous intensity in terms of two approaches: the re-orientational and the photo-fluidization concepts. Both agree in that the formation of opto-mechanically induced stresses is a necessary prerequisite for the process of deformation. Using this argument, the deformation process can be characterized either as a flow or mass transport.}, language = {en} } @article{YadavalliLoebnerPapkeetal.2016, author = {Yadavalli, Nataraja Sekhar and Loebner, Sarah and Papke, Thomas and Sava, Elena and Hurduc, Nicolae and Santer, Svetlana}, title = {A comparative study of photoinduced deformation in azobenzene containing polymer films}, series = {Soft matter}, volume = {12}, journal = {Soft matter}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c6sm00029k}, pages = {2593 -- 2603}, year = {2016}, abstract = {In this paper two groups supporting different views on the mechanism of light induced polymer deformation argue about the respective underlying theoretical conceptions, in order to bring this interesting debate to the attention of the scientific community. The group of Prof. Nicolae Hurduc supports the model claiming that the cyclic isomerization of azobenzenes may cause an athermal transition of the glassy azobenzene containing polymer into a fluid state, the so-called photo-fluidization concept. This concept is quite convenient for an intuitive understanding of the deformation process as an anisotropic flow of the polymer material. The group of Prof. Svetlana Santer supports the re-orientational model where the mass-transport of the polymer material accomplished during polymer deformation is stated to be generated by the light-induced re-orientation of the azobenzene side chains and as a consequence of the polymer backbone that in turn results in local mechanical stress, which is enough to irreversibly deform an azobenzene containing material even in the glassy state. For the debate we chose three polymers differing in the glass transition temperature, 32 degrees C, 87 degrees C and 95 degrees C, representing extreme cases of flexible and rigid materials. Polymer film deformation occurring during irradiation with different interference patterns is recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. We also demonstrated the unique behaviour of azobenzene containing polymeric films to switch the topography in situ and reversibly by changing the irradiation conditions. We discuss the results of reversible deformation of three polymers induced by irradiation with intensity (IIP) and polarization (PIP) interference patterns, and the light of homogeneous intensity in terms of two approaches: the re-orientational and the photo-fluidization concepts. Both agree in that the formation of opto-mechanically induced stresses is a necessary prerequisite for the process of deformation. Using this argument, the deformation process can be characterized either as a flow or mass transport.}, language = {en} } @article{ReichePietschFinketal.1992, author = {Reiche, J{\"u}rgen and Pietsch, Ullrich and Fink, Hans-Peter and Lemmetyinen, Helge}, title = {A comparison fo x-ray methods for structure refinement of Langmuir-Blodgett multilayers}, year = {1992}, abstract = {The possibilities and limits of structure refinement of Langmuir-Blodgett films by means of symmetrical reflection of X- rays are described using the example of a stearic acid multilayer. Three different techniques for the determiantion of the electron density profile from reflectivity data are compared; a Fourier method, a Patterson method, and model calculations. The important role of the a priori information for finding the besft structure model is outlined.}, language = {en} } @article{EisertPlenio1999, author = {Eisert, Jens and Plenio, M. B.}, title = {A comparison of entanglement measures}, year = {1999}, abstract = {We compare the entanglement of formation with a measure defined as the modulus of the negative eigenvalue of the partial transpose. In particular we investigate whether both measures give the same ordering of density perators with respect to the amount of entanglement.}, language = {en} } @article{FuhrmannSeehaferValorietal.2011, author = {Fuhrmann, Marcel and Seehafer, Norbert and Valori, Gherardo and Wiegelmann, Thomas}, title = {A comparison of preprocessing methods for solar force-free magnetic field extrapolation}, issn = {0004-6361}, year = {2011}, language = {en} } @article{FuhrmannSeehaferValorietal.2011, author = {Fuhrmann, Marcel and Seehafer, Norbert and Valori, Gherardo and Wiegelmann, T.}, title = {A comparison of preprocessing methods for solar force-free magnetic field extrapolation}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {526}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201015453}, pages = {12}, year = {2011}, abstract = {Context. Extrapolations of solar photospheric vector magnetograms into three-dimensional magnetic fields in the chromosphere and corona are usually done under the assumption that the fields are force-free. This condition is violated in the photosphere itself and a thin layer in the lower atmosphere above. The field calculations can be improved by preprocessing the photospheric magnetograms. The intention here is to remove a non-force-free component from the data. Aims. We compare two preprocessing methods presently in use, namely the methods of Wiegelmann et al. (2006, Sol. Phys., 233, 215) and Fuhrmann et al. (2007, A\&A, 476, 349). Methods. The two preprocessing methods were applied to a vector magnetogram of the recently observed active region NOAA AR 10 953. We examine the changes in the magnetogram effected by the two preprocessing algorithms. Furthermore, the original magnetogram and the two preprocessed magnetograms were each used as input data for nonlinear force-free field extrapolations by means of two different methods, and we analyze the resulting fields. Results. Both preprocessing methods managed to significantly decrease the magnetic forces and magnetic torques that act through the magnetogram area and that can cause incompatibilities with the assumption of force-freeness in the solution domain. The force and torque decrease is stronger for the Fuhrmann et al. method. Both methods also reduced the amount of small-scale irregularities in the observed photospheric field, which can sharply worsen the quality of the solutions. For the chosen parameter set, the Wiegelmann et al. method led to greater changes in strong-field areas, leaving weak-field areas mostly unchanged, and thus providing an approximation of the magnetic field vector in the chromosphere, while the Fuhrmann et al. method weakly changed the whole magnetogram, thereby better preserving patterns present in the original magnetogram. Both preprocessing methods raised the magnetic energy content of the extrapolated fields to values above the minimum energy, corresponding to the potential field. Also, the fields calculated from the preprocessed magnetograms fulfill the solenoidal condition better than those calculated without preprocessing.}, language = {en} } @article{LiperovskayaPochotelovLiperovskyetal.1994, author = {Liperovskaya, E. V. and Pochotelov, O. A. and Liperovsky, Viktor A. and Oleynik, M. A. and Meister, Claudia-Veronika and Christakis, N.}, title = {A comparison of seismic and anthropogenic effects in the night-time sporadic E-layer of the ionosphere}, year = {1994}, language = {en} } @article{AgarwalGuntuBanerjeeetal.2022, author = {Agarwal, Ankit and Guntu, Ravikumar and Banerjee, Abhirup and Gadhawe, Mayuri Ashokrao and Marwan, Norbert}, title = {A complex network approach to study the extreme precipitation patterns in a river basin}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {32}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {1}, publisher = {American Institute of Physics}, address = {Woodbury, NY}, issn = {1054-1500}, doi = {10.1063/5.0072520}, pages = {12}, year = {2022}, abstract = {The quantification of spatial propagation of extreme precipitation events is vital in water resources planning and disaster mitigation. However, quantifying these extreme events has always been challenging as many traditional methods are insufficient to capture the nonlinear interrelationships between extreme event time series. Therefore, it is crucial to develop suitable methods for analyzing the dynamics of extreme events over a river basin with a diverse climate and complicated topography. Over the last decade, complex network analysis emerged as a powerful tool to study the intricate spatiotemporal relationship between many variables in a compact way. In this study, we employ two nonlinear concepts of event synchronization and edit distance to investigate the extreme precipitation pattern in the Ganga river basin. We use the network degree to understand the spatial synchronization pattern of extreme rainfall and identify essential sites in the river basin with respect to potential prediction skills. The study also attempts to quantify the influence of precipitation seasonality and topography on extreme events. The findings of the study reveal that (1) the network degree is decreased in the southwest to northwest direction, (2) the timing of 50th percentile precipitation within a year influences the spatial distribution of degree, (3) the timing is inversely related to elevation, and (4) the lower elevation greatly influences connectivity of the sites. The study highlights that edit distance could be a promising alternative to analyze event-like data by incorporating event time and amplitude and constructing complex networks of climate extremes.}, language = {en} } @article{KniepertLangevanderKaapetal.2014, author = {Kniepert, Juliane and Lange, Ilja and van der Kaap, Niels J. and Koster, L. Jan Anton and Neher, Dieter}, title = {A conclusive view on charge generation, recombination, and extraction in As-prepared and annealed P3HT:PCBM blends: combined experimental and simulation work}, series = {dvanced energy materials}, volume = {4}, journal = {dvanced energy materials}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201301401}, pages = {11}, year = {2014}, abstract = {Time-delayed collection field (TDCF) and bias-amplified charge extraction (BACE) are applied to as-prepared and annealed poly(3-hexylthiophene):[6,6]-phenyl C-71 butyric acid methyl ester (P3HT:PCBM) blends coated from chloroform. Despite large differences in fill factor, short-circuit current, and power conversion efficiency, both blends exhibit a negligible dependence of photogeneration on the electric field and strictly bimolecular recombination (BMR) with a weak dependence of the BMR coefficient on charge density. Drift-diffusion simulations are performed using the measured coefficients and mobilities, taking into account bimolecular recombination and the possible effects of surface recombination. The excellent agreement between the simulation and the experimental data for an intensity range covering two orders of magnitude indicates that a field-independent generation rate and a density-independent recombination coefficient describe the current-voltage characteristics of the annealed P3HT: PCBM devices, while the performance of the as-prepared blend is shown to be limited by space charge effects due to a low hole mobility. Finally, even though the bimolecular recombination coefficient is small, surface recombination is found to be a negligible loss mechanism in these solar cells.}, language = {en} } @phdthesis{ColpanZenginoglu2007, author = {Colpan Zenginoglu, Anil}, title = {A conformal approach to numerical calculations of asymptotically flat spacetimes}, address = {Potsdam}, pages = {101 S. : graph. Darst.}, year = {2007}, language = {en} } @article{ReyesPerezMorissetPenaetal.2015, author = {Reyes-P{\´e}rez, J. and Morisset, C. and Pena, M. and Mesa-Delgado, A.}, title = {A consistent spectral model of WR 136 and its associated bubble NGC 6888}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88274}, pages = {321 -- 324}, year = {2015}, abstract = {We analyse whether a stellar atmosphere model computed with the code CMFGEN provides an optimal description of the stellar observations of WR 136 and simultaneously reproduces the nebular observations of NGC 6888, such as the ionization degree, which is modelled with the pyCloudy code. All the observational material available (far and near UV and optical spectra) were used to constrain such models. We found that the stellar temperature T∗, at τ = 20, can be in a range between 70 000 and 110 000 K, but when using the nebula as an additional restriction, we found that the stellar models with T∗ ∼ 70 000 K represent the best solution for both, the star and the nebula.}, language = {en} }