@misc{RoeschTiberiusKraus2023, author = {R{\"o}sch, Nicolas and Tiberius, Victor and Kraus, Sascha}, title = {Design thinking for innovation}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, number = {7}, issn = {1460-1060}, doi = {10.25932/publishup-60834}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-608341}, pages = {19}, year = {2023}, abstract = {Purpose - Design thinking has become an omnipresent process to foster innovativeness in various fields. Due to its popularity in both practice and theory, the number of publications has been growing rapidly. The authors aim to develop a research framework that reflects the current state of research and allows for the identification of research gaps. Design/methodology/approach - The authors conduct a systematic literature review based on 164 scholarly articles on design thinking. Findings - This study proposes a framework, which identifies individual and organizational context factors, the stages of a typical design thinking process with its underlying principles and tools, and the individual as well as organizational outcomes of a design thinking project. Originality/value - Whereas previous reviews focused on particular aspects of design thinking, such as its characteristics, the organizational culture as a context factor or its role on new product development, the authors provide a holistic overview of the current state of research.}, language = {en} } @article{RoeschTiberiusKraus2023, author = {R{\"o}sch, Nicolas and Tiberius, Victor and Kraus, Sascha}, title = {Design thinking for innovation}, series = {European journal of innovation management}, volume = {26}, journal = {European journal of innovation management}, number = {7}, publisher = {Emerald}, address = {Bingley}, issn = {1460-1060}, doi = {10.1108/EJIM-03-2022-0164}, pages = {160 -- 176}, year = {2023}, abstract = {Purpose - Design thinking has become an omnipresent process to foster innovativeness in various fields. Due to its popularity in both practice and theory, the number of publications has been growing rapidly. The authors aim to develop a research framework that reflects the current state of research and allows for the identification of research gaps. Design/methodology/approach - The authors conduct a systematic literature review based on 164 scholarly articles on design thinking. Findings - This study proposes a framework, which identifies individual and organizational context factors, the stages of a typical design thinking process with its underlying principles and tools, and the individual as well as organizational outcomes of a design thinking project. Originality/value - Whereas previous reviews focused on particular aspects of design thinking, such as its characteristics, the organizational culture as a context factor or its role on new product development, the authors provide a holistic overview of the current state of research.}, language = {en} } @phdthesis{Smirnov2011, author = {Smirnov, Sergey}, title = {Business process model abstraction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60258}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Business process models are used within a range of organizational initiatives, where every stakeholder has a unique perspective on a process and demands the respective model. As a consequence, multiple process models capturing the very same business process coexist. Keeping such models in sync is a challenge within an ever changing business environment: once a process is changed, all its models have to be updated. Due to a large number of models and their complex relations, model maintenance becomes error-prone and expensive. Against this background, business process model abstraction emerged as an operation reducing the number of stored process models and facilitating model management. Business process model abstraction is an operation preserving essential process properties and leaving out insignificant details in order to retain information relevant for a particular purpose. Process model abstraction has been addressed by several researchers. The focus of their studies has been on particular use cases and model transformations supporting these use cases. This thesis systematically approaches the problem of business process model abstraction shaping the outcome into a framework. We investigate the current industry demand in abstraction summarizing it in a catalog of business process model abstraction use cases. The thesis focuses on one prominent use case where the user demands a model with coarse-grained activities and overall process ordering constraints. We develop model transformations that support this use case starting with the transformations based on process model structure analysis. Further, abstraction methods considering the semantics of process model elements are investigated. First, we suggest how semantically related activities can be discovered in process models-a barely researched challenge. The thesis validates the designed abstraction methods against sets of industrial process models and discusses the method implementation aspects. Second, we develop a novel model transformation, which combined with the related activity discovery allows flexible non-hierarchical abstraction. In this way this thesis advocates novel model transformations that facilitate business process model management and provides the foundations for innovative tool support.}, language = {en} } @article{UlbrichtMohrAltenburgetal.2021, author = {Ulbricht, Alexander and Mohr, Gunther and Altenburg, Simon J. and Oster, Simon and Maierhofer, Christiane and Bruno, Giovanni}, title = {Can potential defects in LPBF be healed from the laser exposure of subsequent layers?}, series = {Metals : open access journal}, volume = {11}, journal = {Metals : open access journal}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2075-4701}, doi = {10.3390/met11071012}, pages = {14}, year = {2021}, abstract = {Additive manufacturing (AM) of metals and in particular laser powder bed fusion (LPBF) enables a degree of freedom in design unparalleled by conventional subtractive methods. To ensure that the designed precision is matched by the produced LPBF parts, a full understanding of the interaction between the laser and the feedstock powder is needed. It has been shown that the laser also melts subjacent layers of material underneath. This effect plays a key role when designing small cavities or overhanging structures, because, in these cases, the material underneath is feed-stock powder. In this study, we quantify the extension of the melt pool during laser illumination of powder layers and the defect spatial distribution in a cylindrical specimen. During the LPBF process, several layers were intentionally not exposed to the laser beam at various locations, while the build process was monitored by thermography and optical tomography. The cylinder was finally scanned by X-ray computed tomography (XCT). To correlate the positions of the unmolten layers in the part, a staircase was manufactured around the cylinder for easier registration. The results show that healing among layers occurs if a scan strategy is applied, where the orientation of the hatches is changed for each subsequent layer. They also show that small pores and surface roughness of solidified material below a thick layer of unmolten material (>200 mu m) serve as seeding points for larger voids. The orientation of the first two layers fully exposed after a thick layer of unmolten powder shapes the orientation of these voids, created by a lack of fusion.}, language = {en} }