@misc{PaulyHelleMiramontetal.2018, author = {Pauly, Maren and Helle, Gerhard and Miramont, C{\´e}cile and B{\"u}ntgen, Ulf and Treydte, Kerstin and Reinig, Frederick and Guibal, Fr{\´e}d{\´e}ric and Sivan, Olivier and Heinrich, Ingo and Riedel, Frank and Kromer, Bernd and Balanzategui, Daniel and Wacker, Lukas and Sookdeo, Adam Sookdeo and Brauer, Achim}, title = {Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1135}, issn = {1866-8372}, doi = {10.25932/publishup-45916}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459169}, pages = {10}, year = {2018}, abstract = {Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this period are scarce and do not provide annual resolution. Here, we report a hydroclimatic reconstruction from stable isotopes (delta O-18, delta C-13) in subfossil pines from southern France. Growing before and during the transition period into the YD (12 900-12 600 cal BP), the trees provide an annually resolved, continuous sequence of atmospheric change. Isotopic signature of tree sourcewater (delta O-18(sw)) and estimates of relative air humidity were reconstructed as a proxy for variations in air mass origin and precipitation regime. We find a distinct increase in inter-annual variability of sourcewater isotopes (delta O-18(sw)), with three major downturn phases of increasing magnitude beginning at 12 740 cal BP. The observed variation most likely results from an amplified intensity of North Atlantic (low delta O-18(sw)) versus Mediterranean (high delta O-18(sw)) precipitation. This marked pattern of climate variability is not seen in records from higher latitudes and is likely a consequence of atmospheric circulation oscillations at the margin of the southward moving polar front.}, language = {en} } @misc{RizzoLauritaAltenberger2018, author = {Rizzo, Giovanna and Laurita, Salvatore and Altenberger, Uwe}, title = {The Timpa delle Murge ophiolitic gabbros, southern Apennines}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1002}, issn = {1866-8372}, doi = {10.25932/publishup-45992}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459928}, pages = {5 -- 20}, year = {2018}, abstract = {The Timpa delle Murge ophiolite in the North Calabrian Unit is part of the Liguride Complex (southern Apennines). The study is concentrated on the gabbroic part of the ophiolite of the Pollino area. They preserve the high-grade ocean floor metamorphic and locally developed flaser textures under ocean floor conditions. The primary magmatic assemblages are clinopyroxene, plagioclase, and opaques. Brown hornblende is a late magmatic phase. Green hornblende, actinolite, albite, chlorite and epidote display metamorphic recrystallization under lower amphibolite facies conditions, followed by greenschist facies. The gabbros show subalkaline near to alkaline character with a tendency to a more calkalkaline trend. The normalization to primitive mantle and mid-ocean ridge basalt (N-MORB) compositions indicates a considerable depletion in Nb, P, Zr and Ti and an enrichment in Ba, Rb, K, Sr and Eu. This points to a mantle source, which is not compatible with a "normal" mid-ocean ridge situation. Rather, the gabbros are generated from a N-MORB-like melt with a strong crustal component, which was influenced by subduction related fluids and episodic melting during mid-ocean-ridge processes. Plausible geodynamic settings of the Timpa delle Murge gabbros are oceanic back-arc positions with embryonic MORB-activities. Similar slab contaminated magmatism is also known from the early stage of island arc formation in supra-subduction zone environments like the Izu-Bonin-Mariana island arc.}, language = {en} } @misc{SiddiquiMautePedatellaetal.2018, author = {Siddiqui, Tarique Adnan and Maute, Astrid and Pedatella, Nick and Yamazaki, Yosuke and L{\"u}hr, Hermann and Stolle, Claudia}, title = {On the variability of the semidiurnal solar and lunar tides of the equatorial electrojet during sudden stratospheric warmings}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1075}, issn = {1866-8372}, doi = {10.25932/publishup-46838}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468389}, pages = {1545 -- 1562}, year = {2018}, abstract = {The variabilities of the semidiurnal solar and lunar tides of the equatorial electrojet (EEJ) are investigated during the 2003, 2006, 2009 and 2013 major sudden stratospheric warming (SSW) events in this study. For this purpose, ground-magnetometer recordings at the equatorial observatories in Huancayo and F{\´u}quene are utilized. Results show a major enhancement in the amplitude of the EEJ semidiurnal lunar tide in each of the four warming events. The EEJ semidiurnal solar tidal amplitude shows an amplification prior to the onset of warmings, a reduction during the deceleration of the zonal mean zonal wind at 60∘ N and 10 hPa, and a second enhancement a few days after the peak reversal of the zonal mean zonal wind during all four SSWs. Results also reveal that the amplitude of the EEJ semidiurnal lunar tide becomes comparable or even greater than the amplitude of the EEJ semidiurnal solar tide during all these warming events. The present study also compares the EEJ semidiurnal solar and lunar tidal changes with the variability of the migrating semidiurnal solar (SW2) and lunar (M2) tides in neutral temperature and zonal wind obtained from numerical simulations at E-region heights. A better agreement between the enhancements of the EEJ semidiurnal lunar tide and the M2 tide is found in comparison with the enhancements of the EEJ semidiurnal solar tide and the SW2 tide in both the neutral temperature and zonal wind at the E-region altitudes.}, language = {en} } @misc{LaraNitzeGrosseetal.2018, author = {Lara, Mark J. and Nitze, Ingmar and Große, Guido and McGuire, David}, title = {Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1035}, issn = {1866-8372}, doi = {10.25932/publishup-45987}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459875}, pages = {12}, year = {2018}, abstract = {Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (similar to 60,000 km(2)) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.}, language = {en} } @misc{WetzelKempkaKuehn2018, author = {Wetzel, Maria and Kempka, Thomas and K{\"u}hn, Michael}, title = {Quantifying rock weakening due to decreasing calcite mineral content by numerical simulations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1092}, issn = {1866-8372}, doi = {10.25932/publishup-47308}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473089}, pages = {21}, year = {2018}, abstract = {The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10\% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34\% and 38\% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47\% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution.}, language = {en} } @phdthesis{Brune2018, author = {Brune, Sascha}, title = {Modelling continental rift dynamics}, doi = {10.25932/publishup-43236}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432364}, school = {Universit{\"a}t Potsdam}, pages = {192}, year = {2018}, abstract = {Continental rift systems open up unique possibilities to study the geodynamic system of our planet: geodynamic localization processes are imprinted in the morphology of the rift by governing the time-dependent activity of faults, the topographic evolution of the rift or by controlling whether a rift is symmetric or asymmetric. Since lithospheric necking localizes strain towards the rift centre, deformation structures of previous rift phases are often well preserved and passive margins, the end product of continental rifting, retain key information about the tectonic history from rift inception to continental rupture. Current understanding of continental rift evolution is based on combining observations from active rifts with data collected at rifted margins. Connecting these isolated data sets is often accomplished in a conceptual way and leaves room for subjective interpretation. Geodynamic forward models, however, have the potential to link individual data sets in a quantitative manner, using additional constraints from rock mechanics and rheology, which allows to transcend previous conceptual models of rift evolution. By quantifying geodynamic processes within continental rifts, numerical modelling allows key insight to tectonic processes that operate also in other plate boundary settings, such as mid ocean ridges, collisional mountain chains or subduction zones. In this thesis, I combine numerical, plate-tectonic, analytical, and analogue modelling approaches, whereas numerical thermomechanical modelling constitutes the primary tool. This method advanced rapidly during the last two decades owing to dedicated software development and the availability of massively parallel computer facilities. Nevertheless, only recently the geodynamical modelling community was able to capture 3D lithospheric-scale rift dynamics from onset of extension to final continental rupture. The first chapter of this thesis provides a broad introduction to continental rifting, a summary of the applied rift modelling methods and a short overview of previews studies. The following chapters, which constitute the main part of this thesis feature studies on plate boundary dynamics in two and three dimension followed by global scale analyses (Fig. 1). Chapter II focuses on 2D geodynamic modelling of rifted margin formation. It highlights the formation of wide areas of hyperextended crustal slivers via rift migration as a key process that affected many rifted margins worldwide. This chapter also contains a study of rift velocity evolution, showing that rift strength loss and extension velocity are linked through a dynamic feed-back. This process results in abrupt accelerations of the involved plates during rifting illustrating for the first time that rift dynamics plays a role in changing global-scale plate motions. Since rift velocity affects key processes like faulting, melting and lower crustal flow, this study also implies that the slow-fast velocity evolution should be imprinted in rifted margin structures. Chapter III relies on 3D Cartesian rift models in order to investigate various aspects of rift obliquity. Oblique rifting occurs if the extension direction is not orthogonal to the rift trend. Using 3D lithospheric-scale models from rift initialisation to breakup I could isolate a characteristic evolution of dominant fault orientations. Further work in Chapter III addresses the impact of rift obliquity on the strength of the rift system. We illustrate that oblique rifting is mechanically preferred over orthogonal rifting, because the brittle yielding requires a lower tectonic force. This mechanism elucidates rift competition during South Atlantic rifting, where the more oblique Equatorial Atlantic Rift proceeded to breakup while the simultaneously active but less oblique West African rift system became a failed rift. Finally this Chapter also investigates the impact of a previous rift phase on current tectonic activity in the linkage area of the Kenyan with Ethiopian rift. We show that the along strike changes in rift style are not caused by changes in crustal rheology. Instead the rift linkage pattern in this area can be explained when accounting for the thinned crust and lithosphere of a Mesozoic rift event. Chapter IV investigates rifting from the global perspective. A first study extends the oblique rift topic of the previous chapter to global scale by investigating the frequency of oblique rifting during the last 230 million years. We find that approximately 70\% of all ocean-forming rift segments involved an oblique component of extension where obliquities exceed 20°. This highlights the relevance of 3D approaches in modelling, surveying, and interpretation of many rifted margins. In a final study, we propose a link between continental rift activity, diffuse CO2 degassing and Mesozoic/Cenozoic climate changes. We used recent CO2 flux measurements in continental rifts to estimate worldwide rift-related CO2 release, which we based on the global extent of rifts through time. The first-order correlation to paleo-atmospheric CO2 proxy data suggests that rifts constitute a major element of the global carbon cycle.}, language = {en} } @phdthesis{Stettner2018, author = {Stettner, Samuel}, title = {Exploring the seasonality of rapid Arctic changes from space}, doi = {10.25932/publishup-42578}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425783}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 132}, year = {2018}, abstract = {Arctic warming has implications for the functioning of terrestrial Arctic ecosystems, global climate and socioeconomic systems of northern communities. A research gap exists in high spatial resolution monitoring and understanding of the seasonality of permafrost degradation, spring snowmelt and vegetation phenology. This thesis explores the diversity and utility of dense TerraSAR-X (TSX) X-Band time series for monitoring ice-rich riverbank erosion, snowmelt, and phenology of Arctic vegetation at long-term study sites in the central Lena Delta, Russia and on Qikiqtaruk (Herschel Island), Canada. In the thesis the following three research questions are addressed: • Is TSX time series capable of monitoring the dynamics of rapid permafrost degradation in ice-rich permafrost on an intra-seasonal scale and can these datasets in combination with climate data identify the climatic drivers of permafrost degradation? • Can multi-pass and multi-polarized TSX time series adequately monitor seasonal snow cover and snowmelt in small Arctic catchments and how does it perform compared to optical satellite data and field-based measurements? • Do TSX time series reflect the phenology of Arctic vegetation and how does the recorded signal compare to in-situ greenness data from RGB time-lapse camera data and vegetation height from field surveys? To answer the research questions three years of TSX backscatter data from 2013 to 2015 for the Lena Delta study site and from 2015 to 2017 for the Qikiqtaruk study site were used in quantitative and qualitative analysis complimentary with optical satellite data and in-situ time-lapse imagery. The dynamics of intra-seasonal ice-rich riverbank erosion in the central Lena Delta, Russia were quantified using TSX backscatter data at 2.4 m spatial resolution in HH polarization and validated with 0.5 m spatial resolution optical satellite data and field-based time-lapse camera data. Cliff top lines were automatically extracted from TSX intensity images using threshold-based segmentation and vectorization and combined in a geoinformation system with manually digitized cliff top lines from the optical satellite data and rates of erosion extracted from time-lapse cameras. The results suggest that the cliff top eroded at a constant rate throughout the entire erosional season. Linear mixed models confirmed that erosion was coupled with air temperature and precipitation at an annual scale, seasonal fluctuations did not influence 22-day erosion rates. The results highlight the potential of HH polarized X-Band backscatter data for high temporal resolution monitoring of rapid permafrost degradation. The distinct signature of wet snow in backscatter intensity images of TSX data was exploited to generate wet snow cover extent (SCE) maps on Qikiqtaruk at high temporal resolution. TSX SCE showed high similarity to Landsat 8-derived SCE when using cross-polarized VH data. Fractional snow cover (FSC) time series were extracted from TSX and optical SCE and compared to FSC estimations from in-situ time-lapse imagery. The TSX products showed strong agreement with the in-situ data and significantly improved the temporal resolution compared to the Landsat 8 time series. The final combined FSC time series revealed two topography-dependent snowmelt patterns that corresponded to in-situ measurements. Additionally TSX was able to detect snow patches longer in the season than Landsat 8, underlining the advantage of TSX for detection of old snow. The TSX-derived snow information provided valuable insights into snowmelt dynamics on Qikiqtaruk previously not available. The sensitivity of TSX to vegetation structure associated with phenological changes was explored on Qikiqtaruk. Backscatter and coherence time series were compared to greenness data extracted from in-situ digital time-lapse cameras and detailed vegetation parameters on 30 areas of interest. Supporting previous results, vegetation height corresponded to backscatter intensity in co-polarized HH/VV at an incidence angle of 31°. The dry, tall shrub dominated ecological class showed increasing backscatter with increasing greenness when using the cross polarized VH/HH channel at 32° incidence angle. This is likely driven by volume scattering of emerging and expanding leaves. Ecological classes with more prostrate vegetation and higher bare ground contributions showed decreasing backscatter trends over the growing season in the co-polarized VV/HH channels likely a result of surface drying instead of a vegetation structure signal. The results from shrub dominated areas are promising and provide a complementary data source for high temporal monitoring of vegetation phenology. Overall this thesis demonstrates that dense time series of TSX with optical remote sensing and in-situ time-lapse data are complementary and can be used to monitor rapid and seasonal processes in Arctic landscapes at high spatial and temporal resolution.}, language = {en} } @phdthesis{Stolle2018, author = {Stolle, Amelie}, title = {Catastrophic Sediment Pulses in the Pokhara Valley, Nepal}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413341}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 173}, year = {2018}, abstract = {Fluvial terraces, floodplains, and alluvial fans are the main landforms to store sediments and to decouple hillslopes from eroding mountain rivers. Such low-relief landforms are also preferred locations for humans to settle in otherwise steep and poorly accessible terrain. Abundant water and sediment as essential sources for buildings and infrastructure make these areas amenable places to live at. Yet valley floors are also prone to rare and catastrophic sedimentation that can overload river systems by abruptly increasing the volume of sediment supply, thus causing massive floodplain aggradation, lateral channel instability, and increased flooding. Some valley-fill sediments should thus record these catastrophic sediment pulses, allowing insights into their timing, magnitude, and consequences. This thesis pursues this theme and focuses on a prominent ~150 km2 valley fill in the Pokhara Valley just south of the Annapurna Massif in central Nepal. The Pokhara Valley is conspicuously broad and gentle compared to the surrounding dissected mountain terrain, and is filled with locally more than 70 m of clastic debris. The area's main river, Seti Khola, descends from the Annapurna Sabche Cirque at 3500-4500 m asl down to 900 m asl where it incises into this valley fill. Humans began to settle on this extensive fan surface in the 1750's when the Trans-Himalayan trade route connected the Higher Himalayas, passing Pokhara city, with the subtropical lowlands of the Terai. High and unstable river terraces and steep gorges undermined by fast flowing rivers with highly seasonal (monsoon-driven) discharge, a high earthquake risk, and a growing population make the Pokhara Valley an ideal place to study the recent geological and geomorphic history of its sediments and the implication for natural hazard appraisals. The objective of this thesis is to quantify the timing, the sedimentologic and geomorphic processes as well as the fluvial response to a series of strong sediment pulses. I report diagnostic sedimentary archives, lithofacies of the fan terraces, their geochemical provenance, radiocarbon-age dating and the stratigraphic relationship between them. All these various and independent lines of evidence show consistently that multiple sediment pulses filled the Pokhara Valley in medieval times, most likely in connection with, if not triggered by, strong seismic ground shaking. The geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation tied to the timing of three medieval Himalayan earthquakes in ~1100, 1255, and 1344 AD. Sediment provenance and calibrated radiocarbon-age data are the key to distinguish three individual sediment pulses, as these are not evident from their sedimentology alone. I explore various measures of adjustment and fluvial response of the river system following these massive aggradation pulses. By using proxies such as net volumetric erosion, incision and erosion rates, clast provenance on active river banks, geomorphic markers such as re-exhumed tree trunks in growth position, and knickpoint locations in tributary valleys, I estimate the response of the river network in the Pokhara Valley to earthquake disturbance over several centuries. Estimates of the removed volumes since catastrophic valley filling began, require average net sediment yields of up to 4200 t km-2 yr-1 since, rates that are consistent with those reported for Himalayan rivers. The lithological composition of active channel-bed load differs from that of local bedrock material, confirming that rivers have adjusted 30-50\% depending on data of different tributary catchments, locally incising with rates of 160-220 mm yr-1. In many tributaries to the Seti Khola, most of the contemporary river loads come from a Higher Himalayan source, thus excluding local hillslopes as sources. This imbalance in sediment provenance emphasizes how the medieval sediment pulses must have rapidly traversed up to 70 km downstream to invade the downstream reaches of the tributaries up to 8 km upstream, thereby blocking the local drainage and thus reinforcing, or locally creating new, floodplain lakes still visible in the landscape today. Understanding the formation, origin, mechanism and geomorphic processes of this valley fill is crucial to understand the landscape evolution and response to catastrophic sediment pulses. Several earthquake-triggered long-runout rock-ice avalanches or catastrophic dam burst in the Higher Himalayas are the only plausible mechanisms to explain both the geomorphic and sedimentary legacy that I document here. In any case, the Pokhara Valley was most likely hit by a cascade of extremely rare processes over some two centuries starting in the early 11th century. Nowhere in the Himalayas do we find valley fills of comparable size and equally well documented depositional history, making the Pokhara Valley one of the most extensively dated valley fill in the Himalayas to date. Judging from the growing record of historic Himalayan earthquakes in Nepal that were traced and dated in fault trenches, this thesis shows that sedimentary archives can be used to directly aid reconstructions and predictions of both earthquake triggers and impacts from a sedimentary-response perspective. The knowledge about the timing, evolution, and response of the Pokhara Valley and its river system to earthquake triggered sediment pulses is important to address the seismic and geomorphic risk for the city of Pokhara. This thesis demonstrates how geomorphic evidence on catastrophic valley infill can help to independently verify paleoseismological fault-trench records and may initiate re-thinking on post-seismic hazard assessments in active mountain regions.}, language = {en} } @phdthesis{Rosenwinkel2018, author = {Rosenwinkel, Swenja}, title = {Rock glaciers and natural dams in Central Asia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410386}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 181}, year = {2018}, abstract = {The formation and breaching of natural dammed lakes have formed the landscapes, especially in seismically active high-mountain regions. Dammed lakes pose both, potential water resources, and hazard in case of dam breaching. Central Asia has mostly arid and semi-arid climates. Rock glaciers already store more water than ice-glaciers in some semi-arid regions of the world, but their distribution and advance mechanisms are still under debate in recent research. Their impact on the water availability in Central Asia will likely increase as temperatures rise and glaciers diminish. This thesis provides insight to the relative age distribution of selected Kyrgyz and Kazakh rock glaciers and their single lobes derived from lichenometric dating. The size of roughly 8000 different lichen specimens was used to approximate an exposure age of the underlying debris surface. We showed that rock-glacier movement differs signifcantly on small scales. This has several implications for climatic inferences from rock glaciers. First, reactivation of their lobes does not necessarily point to climatic changes, or at least at out-of-equilibrium conditions. Second, the elevations of rock-glacier toes can no longer be considered as general indicators of the limit of sporadic mountain permafrost as they have been used traditionally. In the mountainous and seismically active region of Central Asia, natural dams, besides rock glaciers, also play a key role in controlling water and sediment infux into river valleys. However, rock glaciers advancing into valleys seem to be capable of infuencing the stream network, to dam rivers, or to impound lakes. This influence has not previously been addressed. We quantitatively explored these controls using a new inventory of 1300 Central Asian rock glaciers. Elevation, potential incoming solar radiation, and the size of rock glaciers and their feeder basins played key roles in predicting dam appearance. Bayesian techniques were used to credibly distinguish between lichen sizes on rock glaciers and their lobes, and to find those parameters of a rock-glacier system that are most credibly expressing the potential to build natural dams. To place these studies in the region's history of natural dams, a combination of dating of former lake levels and outburst flood modelling addresses the history and possible outburst flood hypotheses of the second largest mountain lake of the world, Issyk Kul in Kyrgyzstan. Megafoods from breached earthen or glacial dams were found to be a likely explanation for some of the lake's highly fluctuating water levels. However, our detailed analysis of candidate lake sediments and outburst-flood deposits also showed that more localised dam breaks to the west of Issyk Kul could have left similar geomorphic and sedimentary evidence in this Central Asian mountain landscape. We thus caution against readily invoking megafloods as the main cause of lake-level drops of Issyk Kul. In summary, this thesis addresses some new pathways for studying rock glaciers and natural dams with several practical implications for studies on mountain permafrost and natural hazards.}, language = {en} } @phdthesis{Oeztuerk2018, author = {{\"O}zt{\"u}rk, Ugur}, title = {Learning more to predict landslides}, doi = {10.25932/publishup-42643}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426439}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 104}, year = {2018}, abstract = {Landslides are frequent natural hazards in rugged terrain, when the resisting frictional force of the surface of rupture yields to the gravitational force. These forces are functions of geological and morphological factors, such as angle of internal friction, local slope gradient or curvature, which remain static over hundreds of years; whereas more dynamic triggering events, such as rainfall and earthquakes, compromise the force balance by temporarily reducing resisting forces or adding transient loads. This thesis investigates landslide distribution and orientation due to landslide triggers (e.g. rainfall) at different scales (6-4∙10^5 km^2) and aims to link rainfall movement with the landslide distribution. It additionally explores the local impacts of the extreme rainstorms on landsliding and the role of precursory stability conditions that could be induced by an earlier trigger, such as an earthquake. Extreme rainfall is a common landslide trigger. Although several studies assessed rainfall intensity and duration to study the distribution of thus triggered landslides, only a few case studies quantified spatial rainfall patterns (i.e. orographic effect). Quantifying the regional trajectories of extreme rainfall could aid predicting landslide prone regions in Japan. To this end, I combined a non-linear correlation metric, namely event synchronization, and radial statistics to assess the general pattern of extreme rainfall tracks over distances of hundreds of kilometers using satellite based rainfall estimates. Results showed that, although the increase in rainfall intensity and duration positively correlates with landslide occurrence, the trajectories of typhoons and frontal storms were insufficient to explain landslide distribution in Japan. Extreme rainfall trajectories inclined northwestwards and were concentrated along some certain locations, such as coastlines of southern Japan, which was unnoticed in the landslide distribution of about 5000 rainfall-triggered landslides. These landslides seemed to respond to the mean annual rainfall rates. Above mentioned findings suggest further investigation on a more local scale to better understand the mechanistic response of landscape to extreme rainfall in terms of landslides. On May 2016 intense rainfall struck southern Germany triggering high waters and landslides. The highest damage was reported at the Braunsbach, which is located on the tributary-mouth fan formed by the Orlacher Bach. Orlacher Bach is a ~3 km long creek that drains a catchment of about ~6 km^2. I visited this catchment in June 2016 and mapped 48 landslides along the creek. Such high landslide activity was not reported in the nearby catchments within ~3300 km^2, despite similar rainfall intensity and duration based on weather radar estimates. My hypothesis was that several landslides were triggered by rainfall-triggered flash floods that undercut hillslope toes along the Orlacher Bach. I found that morphometric features such as slope and curvature play an important role in landslide distribution on this micro scale study site (<10 km^2). In addition, the high number of landslides along the Orlacher Bach could also be boosted by accumulated damages on hillslopes due karst weathering over longer time scales. Precursory damages on hillslopes could also be induced by past triggering events that effect landscape evolution, but this interaction is hard to assess independently from the latest trigger. For example, an earthquake might influence the evolution of a landscape decades long, besides its direct impacts, such as landslides that follow the earthquake. Here I studied the consequences of the 2016 Kumamoto Earthquake (MW 7.1) that triggered some 1500 landslides in an area of ~4000 km^2 in central Kyushu, Japan. Topography, i.e. local slope and curvature, both amplified and attenuated seismic waves, thus controlling the failure mechanism of those landslides (e.g. progressive). I found that topography fails in explaining the distribution and the preferred orientation of the landslides after the earthquake; instead the landslides were concentrated around the northeast of the rupture area and faced mostly normal to the rupture plane. This preferred location of the landslides was dominated mainly by the directivity effect of the strike-slip earthquake, which is the propagation of wave energy along the fault in the rupture direction; whereas amplitude variations of the seismic radiation altered the preferred orientation. I suspect that the earthquake directivity and the asymmetry of seismic radiation damaged hillslopes at those preferred locations increasing landslide susceptibility. Hence a future weak triggering event, e.g. scattered rainfall, could further trigger landslides at those damaged hillslopes.}, language = {en} } @phdthesis{Siegmund2018, author = {Siegmund, Jonatan Frederik}, title = {Quantifying impacts of climate extreme events on vegetation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407095}, school = {Universit{\"a}t Potsdam}, pages = {129}, year = {2018}, abstract = {Together with the gradual change of mean values, ongoing climate change is projected to increase frequency and amplitude of temperature and precipitation extremes in many regions of Europe. The impacts of such in most cases short term extraordinary climate situations on terrestrial ecosystems are a matter of central interest of recent climate change research, because it can not per se be assumed that known dependencies between climate variables and ecosystems are linearly scalable. So far, yet, there is a high demand for a method to quantify such impacts in terms of simultaneities of event time series. In the course of this manuscript the new statistical approach of Event Coincidence Analysis (ECA) as well as it's R implementation is introduced, a methodology that allows assessing whether or not two types of event time series exhibit similar sequences of occurrences. Applications of the method are presented, analyzing climate impacts on different temporal and spacial scales: the impact of extraordinary expressions of various climatic variables on tree stem variations (subdaily and local scale), the impact of extreme temperature and precipitation events on the owering time of European shrub species (weekly and country scale), the impact of extreme temperature events on ecosystem health in terms of NDVI (weekly and continental scale) and the impact of El Ni{\~n}o and La Ni{\~n}a events on precipitation anomalies (seasonal and global scale). The applications presented in this thesis refine already known relationships based on classical methods and also deliver substantial new findings to the scientific community: the widely known positive correlation between flowering time and temperature for example is confirmed to be valid for the tails of the distributions while the widely assumed positive dependency between stem diameter variation and temperature is shown to be not valid for very warm and very cold days. The larger scale investigations underline the sensitivity of anthrogenically shaped landscapes towards temperature extremes in Europe and provide a comprehensive global ENSO impact map for strong precipitation events. Finally, by publishing the R implementation of the method, this thesis shall enable other researcher to further investigate on similar research questions by using Event Coincidence Analysis.}, language = {en} } @phdthesis{Ramos2018, author = {Ramos, Catalina}, title = {Structure and petrophysical properties of the Southern Chile subduction zone along 38.25°S from seismic data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409183}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 111}, year = {2018}, abstract = {Active and passive source data from two seismic experiments within the interdisciplinary project TIPTEQ (from The Incoming Plate to mega Thrust EarthQuake processes) were used to image and identify the structural and petrophysical properties (such as P- and S-velocities, Poisson's ratios, pore pressure, density and amount of fluids) within the Chilean seismogenic coupling zone at 38.25°S, where in 1960 the largest earthquake ever recorded (Mw 9.5) occurred. Two S-wave velocity models calculated using traveltime and noise tomography techniques were merged with an existing velocity model to obtain a 2D S-wave velocity model, which gathered the advantages of each individual model. In a following step, P- and S-reflectivity images of the subduction zone were obtained using different pre stack and post-stack depth migration techniques. Among them, the recent prestack line-drawing depth migration scheme yielded revealing results. Next, synthetic seismograms modelled using the reflectivity method allowed, through their input 1D synthetic P- and S-velocities, to infer the composition and rocks within the subduction zone. Finally, an image of the subduction zone is given, jointly interpreting the results from this work with results from other studies. The Chilean seismogenic coupling zone at 38.25°S shows a continental crust with highly reflective horizontal, as well as (steep) dipping events. Among them, the Lanalhue Fault Zone (LFZ), which is interpreted to be east-dipping, is imaged to very shallow depths. Some steep reflectors are observed for the first time, for example one near the coast, related to high seismicity and another one near the LFZ. Steep shallow reflectivity towards the volcanic arc could be related to a steep west-dipping reflector interpreted as fluids and/or melts, migrating upwards due to material recycling in the continental mantle wedge. The high resolution of the S-velocity model in the first kilometres allowed to identify several sedimentary basins, characterized by very low P- and S-velocities, high Poisson's ratios and possible steep reflectivity. Such high Poisson's ratios are also observed within the oceanic crust, which reaches the seismogenic zone hydrated due to bending-related faulting. It is interpreted to release water until reaching the coast and under the continental mantle wedge. In terms of seismic velocities, the inferred composition and rocks in the continental crust is in agreement with field geology observations at the surface along the proflle. Furthermore, there is no requirement to call on the existence of measurable amounts of present-day fluids above the plate interface in the continental crust of the Coastal Cordillera and the Central Valley in this part of the Chilean convergent margin. A large-scale anisotropy in the continental crust and upper mantle, previously proposed from magnetotelluric studies, is proposed from seismic velocities. However, quantitative studies on this topic in the continental crust of the Chilean seismogenic zone at 38.25°S do not exist to date.}, language = {en} } @phdthesis{Engelhardt2018, author = {Engelhardt, Jonathan}, title = {40Ar/39Ar geochronology of ICDP PALEOVAN drilling cores}, doi = {10.25932/publishup-42953}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429539}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 338}, year = {2018}, abstract = {The scientific drilling campaign PALEOVAN was conducted in the summer of 2010 and was part of the international continental drilling programme (ICDP). The main goal of the campaign was the recovery of a sensitive climate archive in the East of Anatolia. Lacustrine deposits underneath the lake floor of 'Lake Van' constitute this archive. The drilled core material was recovered from two locations: the Ahlat Ridge and the Northern Basin. A composite core was constructed from cored material of seven parallel boreholes at the Ahlat Ridge and covers an almost complete lacustrine history of Lake Van. The composite record offered sensitive climate proxies such as variations of total organic carbon, K/Ca ratios, or a relative abundance of arboreal pollen. These proxies revealed patterns that are similar to climate proxy variations from Greenland ice cores. Climate variations in Greenland ice cores have been dated by modelling the timing of orbital forces to affect the climate. Volatiles from melted ice aliquots are often taken as high-resolution proxies and provide a base for fitting the according temporal models. The ICDP PALEOVAN scientific team fitted proxy data from the lacustrine drilling record to ice core data and constructed an age model. Embedded volcaniclastic layers had to be dated radiometrically in order to provide independent age constraints to the climate-stratigraphic age model. Solving this task by an application of the 40Ar/39Ar method was the main objective of this thesis. Earlier efforts to apply the 40Ar/39Ar dating resulted in inaccuracies that could not be explained satisfactorily. The absence of K-rich feldspars in suitable tephra layers implied that feldspar crystals needed to be 500 μm in size minimum, in order to apply single-crystal 40Ar/39Ar dating. Some of the samples did not contain any of these grain sizes or only very few crystals of that size. In order to overcome this problem this study applied a combined single-crystal and multi-crystal approach with different crystal fractions from the same sample. The preferred method of a stepwise heating analysis of an aliquot of feldspar crystals has been applied to three samples. The Na-rich crystals and their young geological age required 20 mg of inclusion-free, non-corroded feldspars. Small sample volumes (usually 25 \% aliquots of 5 cm3 of sample material - a spoon full of tephra) and the widespread presence of melt-inclusion led to the application of combined single- and multigrain total fusion analyses. 40Ar/39Ar analyses on single crystals have the advantage of being able to monitor the presence of excess 40Ar and detrital or xenocrystic contamination in the samples. Multigrain analyses may hide the effects from these obstacles. The results from the multigrain analyses are therefore discussed with respect to the findings from the respective cogenetic single crystal ages. Some of the samples in this study were dated by 40Ar/39Ar on feldspars on multigrain separates and (if available) in combination with only a few single crystals. 40Ar/39Ar ages from two of the samples deviated statistically from the age model. All other samples resulted in identical ages. The deviations displayed older ages than those obtained from the age model. t-Tests compared radiometric ages with available age control points from various proxies and from the relative paleointensity of the earth magnetic field within a stratigraphic range of ± 10 m. Concordant age control points from different relative chronometers indicated that deviations are a result of erroneous 40Ar/39Ar ages. The thesis argues two potential reasons for these ages: (1) the irregular appearance of 40Ar from rare melt- and fluid- inclusions and (2) the contamination of the samples with older crystals due to a rapid combination of assimilation and ejection. Another aliquot of feldspar crystals that underwent separation for the application of 40Ar/39Ar dating was investigated for geochemical inhomogeneities. Magmatic zoning is ubiquitous in the volcaniclastic feldspar crystals. Four different types of magmatic zoning were detected. The zoning types are compositional zoning (C-type zoning), pseudo-oscillatory zoning of trace ele- ment concentrations (PO-type zoning), chaotic and patchy zoning of major and trace element concentrations (R-type zoning) and concentric zoning of trace elements (CC-type zoning). Sam- ples that deviated in 40Ar/39Ar ages showed C-type zoning, R-type zoning or a mix of different types of zoning (C-type and PO-type). Feldspars showing PO-type zoning typically represent the smallest grain size fractions in the samples. The constant major element compositions of these crystals are interpreted to represent the latest stages in the compositional evolution of feldspars in a peralkaline melt. PO-type crystals contain less melt- inclusions than other zoning types and are rarely corroded. This thesis concludes that feldspars that show PO-type zoning are most promising chronometers for the 40Ar/39Ar method, if samples provide mixed zoning types of Quaternary anorthoclase feldspars. Five samples were dated by applying the 40Ar/39Ar method to volcanic glass. High fractions of atmospheric Ar (typically > 98\%) significantly hampered the precision of the 40Ar/39Ar ages and resulted in rough age estimates that widely overlap the age model. Ar isotopes indicated that the glasses bore a chorine-rich Ar-end member. The chlorine-derived 38Ar indicated chlorine-rich fluid-inclusions or the hydration of the volcanic glass shards. This indication strengthened the evidence that irregularly distributed melt-inclusions and thus irregular distributed excess 40Ar influenced the problematic feldspar 40Ar/39Ar ages. Whether a connection between a corrected initial 40Ar/36Ar ratio from glasses to the 40Ar/36Ar ratios from pore waters exists remains unclear. This thesis offers another age model, which is similarly based on the interpolation of the temporal tie points from geophysical and climate-stratigraphic data. The model used a PCHIP- interpolation (piecewise cubic hermite interpolating polynomial) whereas the older age model used a spline-interpolation. Samples that match in ages from 40Ar/39Ar dating of feldspars with the earlier published age model were additionally assigned with an age from the PCHIP- interpolation. These modelled ages allowed a recalculation of the Alder Creek sanidine mineral standard. The climate-stratigraphic calibration of an 40Ar/39Ar mineral standard proved that the age versus depth interpolations from PAELOVAN drilling cores were accurate, and that the applied chronometers recorded the temporal evolution of Lake Van synchronously. Petrochemical discrimination of the sampled volcaniclastic material is also given in this thesis. 41 from 57 sampled volcaniclastic layers indicate Nemrut as their provenance. Criteria that served for the provenance assignment are provided and reviewed critically. Detailed correlations of selected PALEOVAN volcaniclastics to onshore samples that were described in detail by earlier studies are also discussed. The sampled volcaniclastics dominantly have a thickness of < 40 cm and have been ejected by small to medium sized eruptions. Onshore deposits from these types of eruptions are potentially eroded due to predominant strong winds on Nemrut and S{\"u}phan slopes. An exact correlation with the data presented here is therefore equivocal or not possible at all. Deviating feldspar 40Ar/39Ar ages can possibly be explained by inherited 40Ar from feldspar xenocrysts contaminating the samples. In order to test this hypothesis diffusion couples of Ba were investigated in compositionally zoned feldspar crystals. The diffusive behaviour of Ba in feldspar is known, and gradients in the changing concentrations allowed for the calculation of the duration of the crystal's magmatic development since the formation of the zoning interface. Durations were compared with degassing scenarios that model the Ar-loss during assimilation and subsequent ejection of the xenocrystals. Diffusive equilibration of the contrasting Ba concentrations is assumed to generate maximum durations as the gradient could have been developed in several growth and heating stages. The modelling does not show any indication of an involvement of inherited 40Ar in any of the deviating samples. However, the analytical set-up represents the lower limit of the required spatial resolution. Therefore, it cannot be excluded that the degassing modelling relies on a significant overestimation of the maximum duration of the magmatic history. Nevertheless, the modelling of xenocrystal degassing evidences that the irregular incorporation of excess 40Ar by melt- and fluid inclusions represents the most critical problem that needs to be overcome in dating volcaniclastic feldspars from the PALEOVAN drill cores. This thesis provides the complete background in generating and presenting 40Ar/39Ar ages that are compared to age data from a climate-stratigraphic model. Deviations are identified statistically and then discussed in order to find explanations from the age model and/or from 40Ar/39Ar geochronology. Most of the PALEOVAN stratigraphy provides several chronometers that have been proven for their synchronicity. Lacustrine deposits from Lake Van represent a key archive for reconstructing climate evolution in the eastern Mediterranean and in the Near East. The PALEOVAN record offers a climate-stratigraphic age model with a remarkable accuracy and resolution.}, language = {en} } @phdthesis{Witt2018, author = {Witt, Tanja Ivonne}, title = {Camera Monitoring at volcanoes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421073}, school = {Universit{\"a}t Potsdam}, pages = {viii, 140}, year = {2018}, abstract = {Basaltic fissure eruptions, such as on Hawai'i or on Iceland, are thought to be driven by the lateral propagation of feeder dikes and graben subsidence. Associated solid earth processes, such as deformation and structural development, are well studied by means of geophysical and geodetic technologies. The eruptions themselves, lava fountaining and venting dynamics, in turn, have been much less investigated due to hazardous access, local dimension, fast processes, and resulting poor data availability. This thesis provides a detailed quantitative understanding of the shape and dynamics of lava fountains and the morphological changes at their respective eruption sites. For this purpose, I apply image processing techniques, including drones and fixed installed cameras, to the sequence of frames of video records from two well-known fissure eruptions in Hawai'i and Iceland. This way I extract the dimensions of multiple lava fountains, visible in all frames. By putting these results together and considering the acquisition times of the frames I quantify the variations in height, width and eruption velocity of the lava fountains. Then I analyse these time-series in both time and frequency domains and investigate the similarities and correlations between adjacent lava fountains. Following this procedure, I am able to link the dynamics of the individual lava fountains to physical parameters of the magma transport in the feeder dyke of the fountains. The first case study in this thesis focuses on the March 2011 Pu'u'O'o eruption, Hawai'i, where a continuous pulsating behaviour at all eight lava fountains has been observed. The lava fountains, even those from different parts of the fissure that are closely connected, show a similar frequency content and eruption behaviour. The regular pattern in the heights of lava fountain suggests a controlling process within the magma feeder system like a hydraulic connection in the underlying dyke, affecting or even controlling the pulsating behaviour. The second case study addresses the 2014-2015 Holuhraun fissure eruption, Iceland. In this case, the feeder dyke is highlighted by the surface expressions of graben-like structures and fault systems. At the eruption site, the activity decreases from a continuous line of fire of ~60 vents to a limited number of lava fountains. This can be explained by preferred upwards magma movements through vertical structures of the pre-eruptive morphology. Seismic tremors during the eruption reveal vent opening at the surface and/or pressure changes in the feeder dyke. The evolving topography of the cinder cones during the eruption interacts with the lava fountain behaviour. Local variations in the lava fountain height and width are controlled by the conduit diameter, the depth of the lava pond and the shape of the crater. Modelling of the fountain heights shows that long-term eruption behaviour is controlled mainly by pressure changes in the feeder dyke. This research consists of six chapters with four papers, including two first author and two co-author papers. It establishes a new method to analyse lava fountain dynamics by video monitoring. The comparison with the seismicity, geomorphologic and structural expressions of fissure eruptions shows a complex relationship between focussed flow through dykes, the morphology of the cinder cones, and the lava fountain dynamics at the vents of a fissure eruption.}, language = {en} } @misc{CrisologoWarrenMuehlbaueretal.2018, author = {Crisologo, Irene and Warren, Robert A. and M{\"u}hlbauer, Kai and Heistermann, Maik}, title = {Enhancing the consistency of spaceborne and ground-based radar comparisons by using beam blockage fraction as a quality filter}, series = {Atmospheric Measurement Techniques}, journal = {Atmospheric Measurement Techniques}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418198}, pages = {14}, year = {2018}, abstract = {We explore the potential of spaceborne radar (SR) observations from the Ku-band precipitation radars onboard the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) satellites as a reference to quantify the ground radar (GR) reflectivity bias. To this end, the 3-D volume-matching algorithm proposed by Schwaller and Morris (2011) is implemented and applied to 5 years (2012-2016) of observations. We further extend the procedure by a framework to take into account the data quality of each ground radar bin. Through these methods, we are able to assign a quality index to each matching SR-GR volume, and thus compute the GR calibration bias as a quality-weighted average of reflectivity differences in any sample of matching GR-SR volumes. We exemplify the idea of quality-weighted averaging by using the beam blockage fraction as the basis of a quality index. As a result, we can increase the consistency of SR and GR observations, and thus the precision of calibration bias estimates. The remaining scatter between GR and SR reflectivity as well as the variability of bias estimates between overpass events indicate, however, that other error sources are not yet fully addressed. Still, our study provides a framework to introduce any other quality variables that are considered relevant in a specific context. The code that implements our analysis is based on the wradlib open-source software library, and is, together with the data, publicly available to monitor radar calibration or to scrutinize long series of archived radar data back to December 1997, when TRMM became operational.}, language = {en} } @phdthesis{Ott2018, author = {Ott, Florian}, title = {Late Glacial and Holocene climate and environmental evolution in the southern Baltic lowlands derived from varved lake sediments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414805}, school = {Universit{\"a}t Potsdam}, pages = {xix, 241}, year = {2018}, abstract = {Holocene climate variability is generally characterized by low frequency changes than compared to the last glaciations including the Lateglacial. However, there is vast evidence for decadal to centennial scale oscillations and millennial scale climate trends, which are within and beyond a human lifetime perception, respectively. Within the Baltic realm, a transitional zone between oceanic and continental climate influence, the impact of Holocene and Lateglacial climate and environmental change is currently partly understood. This is mainly attributed to the scarcity of well-dated and high-resolution sediment records and to the lacking continuity of already investigated archives. The aim of this doctoral thesis is to reconstruct Holocene and Late Glacial climate variability on local to (over)regional scales based on varved (annually laminated) sediments from Lake Czechowskie down to annual resolution. This project was carried out within the Virtual Institute for Integrated Climate and Landscape Evolution Analyses (ICLEA) and funded by the Helmholtz Association and the Helmholtz Climate Initiative REKLIM (Regional Climate Change). ICLEA intended to gain a better understanding of climate variability and landscape evolution processes in the Northern Central European lowlands since the last deglaciation. REKLIM Topic 8 "Abrupt climate change derived from proxy data" aims at identifying spatiotemporal patterns of climate variability between e.g. higher and lower latitudes. The main aim of this thesis was (i) to establish a robust chronology based on a multiple dating approach for Lake Czechowskie covering the Late Glacial and Holocene and for the Trzechowskie palaeolake for the Lateglacial, respectively, (ii) to reconstruct past climatic and environmental conditions on centennial to multi-millennial time scales and (iii) to distinguish between local to regional different sediments responses to climate change. Addressing the first aim, the Lake Czechowskie chronology has been established by a multiple dating approach comprising information from varve counting, tephrochronology, AMS 14C dating of terrestrial plant remains, biostratigraphy and 137Cs activity concentration measurements. Those independent age constraints covering the Lateglacial and the entire Holocene and have been further implemented in a Bayesian age model by using OxCal v.4.2. Thus, even within non-varved sediment intervals, robust chronological information has been used for absolute age determination. The identification of five cryptotephras, of which three are used as unambiguous isochrones, is furthermore a significant improvement of the Czechowskie chronology and currently unique for the Holocene within Poland. The first findings of coexisting early Holocene H{\"a}sseldalen and Askja-S cryptotephras within a varved sequence even allowed differential dating between both volcanic ashes and stimulated the discussion of revising the absolute ages of the Askja-S tephra. The Trzechowskie palaeolake chronology has been established by a multiple dating approach comprising varve counting, tephrochronology, AMS 14C dating of terrestrial plant remains and biostratigraphy, covers the Lateglacial period (Aller{\o}d and Younger Dryas) and has been implemented in OxCal v.4.2. Those age constraints allowed regional correlation to other high-resolution climate archives and identifying leads and lags of proxy responses at the onset of the Younger Dryas. The second aim has been accomplished by detailed micro-facies and geochemical analyses of the Czechowskie sediments for the entire Holocene. Thus, especially micro-facies changes had been linked to enhanced productivity at Lake Czechowskie. Most prominent changes have been recorded at 7.3, 6.5, 4.3 and 2.8 varve kyrs BP and are linked to a stepwise increasing influence of Atlantic air masses. Especially, the mid-Holocene change, which had been widely reported from palaeohydrological records in low latitudes, has been identified and linked to large scale reorganization of atmospheric circulation patterns. Thus, especially long-term changes of climatic and environmental boundary conditions are widely recorded by the Czechowskie sediments. The pronounced response to (multi)millennial scale changes is further corroborated by the lack of clear sediment responses to early Holocene centennial scale climate oscillations (e.g. the Preboreal Oscillation). However, decadal scale changes at Lake Czechowskie during the most recent period (last 140 years) have been investigated in a lake comparison study. To fulfill the third aim of the doctoral thesis, three lakes in close vicinity to each other have been investigated in order to better distinguish how local, site-specific parameters, may superimpose regional climate driven changes. All lakes haven been unambiguously linked by the Askja AD1875 cryptotephra and independent varve chronologies. As a result, climate warming has only been recorded by sedimentation changes at the smallest and best sheltered lake (Głęboczek), whereas the largest lake (Czechowskie) and the shallowest lake (Jelonek) showed attenuated and less clear sediment responses, respectively. The different responses have been linked to morphological lake characteristics (lake size and depth, catchment area). This study highlights the potential of high-resolution lake comparison for robust proxy based climate reconstructions. In summary, the doctoral thesis presents a high-resolution sediment record with an underlying age model, which is prerequisite for unprecedented age control down to annual resolution. Sediment proxy based climate reconstructions demonstrate the importance of the Czechowskie sediments for better understanding climate variability in the southern Baltic realm. Case studies showed the clear response on millennial time scale, while decadal scale fluctuations are either less well expressed or superimposed by local, site-specific parameters. The identification of volcanic ash layers is not only used for unambiguous isochrones, those are key tie lines for local to supra regional archive synchronization and establish the Lake Czechowskie as a key climate archive.}, language = {en} } @misc{OlenBookhagen2018, author = {Olen, Stephanie M. and Bookhagen, Bodo}, title = {Mapping Damage-Affected Areas after Natural Hazard Events Using Sentinel-1 Coherence Time Series}, series = {remote sensing}, journal = {remote sensing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417766}, pages = {19}, year = {2018}, abstract = {The emergence of the Sentinel-1A and 1B satellites now offers freely available and widely accessible Synthetic Aperture Radar (SAR) data. Near-global coverage and rapid repeat time (6-12 days) gives Sentinel-1 data the potential to be widely used for monitoring the Earth's surface. Subtle land-cover and land surface changes can affect the phase and amplitude of the C-band SAR signal, and thus the coherence between two images collected before and after such changes. Analysis of SAR coherence therefore serves as a rapidly deployable and powerful tool to track both seasonal changes and rapid surface disturbances following natural disasters. An advantage of using Sentinel-1 C-band radar data is the ability to easily construct time series of coherence for a region of interest at low cost. In this paper, we propose a new method for Potentially Affected Area (PAA) detection following a natural hazard event. Based on the coherence time series, the proposed method (1) determines the natural variability of coherence within each pixel in the region of interest, accounting for factors such as seasonality and the inherent noise of variable surfaces; and (2) compares pixel-by-pixel syn-event coherence to temporal coherence distributions to determine where statistically significant coherence loss has occurred. The user can determine to what degree the syn-event coherence value (e.g., 1st, 5th percentile of pre-event distribution) constitutes a PAA, and integrate pertinent regional data, such as population density, to rank and prioritise PAAs. We apply the method to two case studies, Sarpol-e, Iran following the 2017 Iran-Iraq earthquake, and a landslide-prone region of NW Argentina, to demonstrate how rapid identification and interpretation of potentially affected areas can be performed shortly following a natural hazard event.}, language = {en} } @phdthesis{Smith2018, author = {Smith, Taylor}, title = {Decadal changes in the snow regime of High Mountain Asia, 1987-2016}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407120}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 142}, year = {2018}, abstract = {More than a billion people rely on water from rivers sourced in High Mountain Asia (HMA), a significant portion of which is derived from snow and glacier melt. Rural communities are heavily dependent on the consistency of runoff, and are highly vulnerable to shifts in their local environment brought on by climate change. Despite this dependence, the impacts of climate change in HMA remain poorly constrained due to poor process understanding, complex terrain, and insufficiently dense in-situ measurements. HMA's glaciers contain more frozen water than any region outside of the poles. Their extensive retreat is a highly visible and much studied marker of regional and global climate change. However, in many catchments, snow and snowmelt represent a much larger fraction of the yearly water budget than glacial meltwaters. Despite their importance, climate-related changes in HMA's snow resources have not been well studied. Changes in the volume and distribution of snowpack have complex and extensive impacts on both local and global climates. Eurasian snow cover has been shown to impact the strength and direction of the Indian Summer Monsoon -- which is responsible for much of the precipitation over the Indian Subcontinent -- by modulating earth-surface heating. Shifts in the timing of snowmelt have been shown to limit the productivity of major rangelands, reduce streamflow, modify sediment transport, and impact the spread of vector-borne diseases. However, a large-scale regional study of climate impacts on snow resources had yet to be undertaken. Passive Microwave (PM) remote sensing is a well-established empirical method of studying snow resources over large areas. Since 1987, there have been consistent daily global PM measurements which can be used to derive an estimate of snow depth, and hence snow-water equivalent (SWE) -- the amount of water stored in snowpack. The SWE estimation algorithms were originally developed for flat and even terrain -- such as the Russian and Canadian Arctic -- and have rarely been used in complex terrain such as HMA. This dissertation first examines factors present in HMA that could impact the reliability of SWE estimates. Forest cover, absolute snow depth, long-term average wind speeds, and hillslope angle were found to be the strongest controls on SWE measurement reliability. While forest density and snow depth are factors accounted for in modern SWE retrieval algorithms, wind speed and hillslope angle are not. Despite uncertainty in absolute SWE measurements and differences in the magnitude of SWE retrievals between sensors, single-instrument SWE time series were found to be internally consistent and suitable for trend analysis. Building on this finding, this dissertation tracks changes in SWE across HMA using a statistical decomposition technique. An aggregate decrease in SWE was found (10.6 mm/yr), despite large spatial and seasonal heterogeneities. Winter SWE increased in almost half of HMA, despite general negative trends throughout the rest of the year. The elevation distribution of these negative trends indicates that while changes in SWE have likely impacted glaciers in the region, climate change impacts on these two pieces of the cryosphere are somewhat distinct. Following the discussion of relative changes in SWE, this dissertation explores changes in the timing of the snowmelt season in HMA using a newly developed algorithm. The algorithm is shown to accurately track the onset and end of the snowmelt season (70\% within 5 days of a control dataset, 89\% within 10). Using a 29-year time series, changes in the onset, end, and duration of snowmelt are examined. While nearly the entirety of HMA has experienced an earlier end to the snowmelt season, large regions of HMA have seen a later start to the snowmelt season. Snowmelt periods have also decreased in almost all of HMA, indicating that the snowmelt season is generally shortening and ending earlier across HMA. By examining shifts in both the spatio-temporal distribution of SWE and the timing of the snowmelt season across HMA, we provide a detailed accounting of changes in HMA's snow resources. The overall trend in HMA is towards less SWE storage and a shorter snowmelt season. However, long-term and regional trends conceal distinct seasonal, temporal, and spatial heterogeneity, indicating that changes in snow resources are strongly controlled by local climate and topography, and that inter-annual variability plays a significant role in HMA's snow regime.}, language = {en} } @phdthesis{Haendel2018, author = {H{\"a}ndel, Annabel}, title = {Ground-motion model selection and adjustment for seismic hazard analysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418123}, school = {Universit{\"a}t Potsdam}, pages = {122}, year = {2018}, abstract = {Erdbeben k{\"o}nnen starke Bodenbewegungen erzeugen und es ist wichtig, diese in einer seismischen Gef{\"a}hrdungsanalyse korrekt vorherzusagen. {\"U}blicherweise werden dazu empirisch ermittelte Bodenbewegungsmodelle (GMPE) in einem logischen Baum zusammengef{\"u}gt. Wenn jedoch die Bodenbewegung in einem Gebiet mit geringer Seismizit{\"a}t bestimmen werden soll, dann fehlen in der Regel die Daten, um regionsspezifische GMPEs zu entwickeln. In diesen F{\"a}llen ist es notwendig, auf Modelle aus anderen Gebieten mit guter Datengrundlage zur{\"u}ckzugreifen und diese an die Zielregion anzupassen. Zur korrekten Anpassung werden seismologische Informationen aus der Zielregion wie beispielsweise die standortspezifische D{\"a}mpfung kappa0 ben{\"o}tigt. Diese Parameter lassen sich jedoch ebenfalls nur unzuverl{\"a}ssig bestimmen, wenn die Datengrundlage schlecht ist. In meiner Dissertation besch{\"a}ftige ich mich daher mit der Auswahl von GMPEs f{\"u}r den logischen Baum beziehungsweise deren Anpassung an Regionen mit geringer Seismizit{\"a}t. Ich folge dabei zwei verschiedenen Strategien. Im ersten Ansatz geht es um das Aufstellen eines logischen Baumes, falls kein regionsspezifisches Modell vorhanden ist. Ich stelle eine Methode vor, in der mehrere regionsfremde Modelle zu einem Mixmodell zusammengef{\"u}gt werden. Die Modelle werden dabei je nach ihrer Eignung gewichtet und die Gewichte mittels der wenigen verf{\"u}gbaren Daten aus der Zielregion ermittelt. Ein solches Mixmodell kann als sogenanntes 'Backbone'-Modell verwendet werden, welches in der Lage ist, mittlere Bodenbewegungen in der Zielregion korrekt vorherzusagen. Ich teste diesen Ansatz f{\"u}r Nordchile und acht GMPEs, die f{\"u}r verschiedene Subduktionszonen auf der Welt entwickelt wurden. Die Resultate zeigen, dass das Mixmodell bessere Ergebnisse liefert als die einzelnen GMPEs, die zu seiner Erzeugung genutzt wurden. Es ist außerdem ebenso gut in der Vorhersage von Bodenbewegungen wie ein Regressionsmodell, welches extra f{\"u}r Nordchile entwickelt wurde. Im zweiten Ansatz besch{\"a}ftige ich mich mit der Bestimmung der standortspezifischen D{\"a}mpfung kappa0. kappa0 ist einer der wichtigsten Parameter zur Anpassung eines GMPEs an eine andere Region. Mein Ziel ist es, kappa0 aus seismischer Bodenunruhe anstelle von Erdbeben zu ermitteln, da diese kontinuierlich aufgezeichnet wird. Mithilfe von Interferometrie kann die Geschwindigkeit und D{\"a}mpfung von seismischen Wellen im Untergrund bestimmt werden. Dazu werden lange Aufzeichnungsreihen seismischer Bodenunruhe entweder kreuzkorreliert oder entfaltet (Dekonvolution). Die Bestimmung der D{\"a}mpfung aus Bodenunruhe bei Frequenzen {\"u}ber 1 Hz und in geringen Tiefen ist jedoch nicht trivial. Ich zeige in meiner Dissertation die Ergebnisse von zwei Studien. In der ersten Studie wird die D{\"a}mpfung von Love-Wellen zwischen 1-4 Hz f{\"u}r ein kleines Testarray in Griechenland ermittelt. In der zweiten Studie verwende ich die Daten einer Bohrloch und einer Oberfl{\"a}chenstation aus dem Vogtland, um die D{\"a}mpfung von S-Wellen zwischen 5-15 Hz zu bestimmen. Diese beiden Studien stellen jedoch nur den Ausgangspunkt f{\"u}r zuk{\"u}nftige Untersuchungen dar, in denen kappa0 direkt aus der seismischer Bodenunruhe hergeleitet werden soll.}, language = {en} } @misc{SchneiderGuenterTaubert2018, author = {Schneider, Matthias and G{\"u}nter, Christina and Taubert, Andreas}, title = {Co-deposition of a hydrogel/calcium phosphate hybrid layer on 3D printed poly(lactic acid) scaffolds via dip coating}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1057}, issn = {1866-8372}, doi = {10.25932/publishup-47442}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474427}, pages = {21}, year = {2018}, abstract = {The article describes the surface modification of 3D printed poly(lactic acid) (PLA) scaffolds with calcium phosphate (CP)/gelatin and CP/chitosan hybrid coating layers. The presence of gelatin or chitosan significantly enhances CP co-deposition and adhesion of the mineral layer on the PLA scaffolds. The hydrogel/CP coating layers are fairly thick and the mineral is a mixture of brushite, octacalcium phosphate, and hydroxyapatite. Mineral formation is uniform throughout the printed architectures and all steps (printing, hydrogel deposition, and mineralization) are in principle amenable to automatization. Overall, the process reported here therefore has a high application potential for the controlled synthesis of biomimetic coatings on polymeric biomaterials.}, language = {en} } @misc{JobeLiBookhagenetal.2018, author = {Jobe, Jessica Ann Thompson and Li, Tao and Bookhagen, Bodo and Chen, Jie and Burbank, Douglas W.}, title = {Dating growth strata and basin fill by combining 26Al/10Be burial dating and magnetostratigraphy}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1044}, issn = {1866-8372}, doi = {10.25932/publishup-46806}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468067}, pages = {806 -- 828}, year = {2018}, abstract = {Cosmogenic burial dating enables dating of coarse-grained, Pliocene-Pleistocene sedimentary units that are typically difficult to date with traditional methods, such as magnetostratigraphy. In the actively deforming western Tarim Basin in NW China, Pliocene-Pleistocene conglomerates were dated at eight sites, integrating Al-26/Be-10 burial dating with previously published magnetostratigraphic sections. These samples were collected from growth strata on the flanks of growing folds and from sedimentary units beneath active faults to place timing constraints on the initiation of deformation of structures within the basin and on shortening rates on active faults. These new basin-fill and growthstrata ages document the late Neogene and Quaternary growth of the Pamir and Tian Shan orogens between >5 and 1 Ma and delineate the eastward propagation of deformation at rates up to 115 km/m.y. and basinward growth of both mountain belts at rates up to 12 km/m.y.}, language = {en} } @misc{PurintonBookhagen2018, author = {Purinton, Benjamin and Bookhagen, Bodo}, title = {Measuring decadal vertical land-level changes from SRTM-C (2000) and TanDEM-X (∼ 2015) in the south-central Andes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {480}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420487}, pages = {16}, year = {2018}, abstract = {In the arctic and high mountains it is common to measure vertical changes of ice sheets and glaciers via digital elevation model (DEM) differencing. This requires the signal of change to outweigh the noise associated with the datasets. Excluding large landslides, on the ice-free earth the land-level change is smaller in vertical magnitude and thus requires more accurate DEMs for differencing and identification of change. Previously, this has required meter to submeter data at small spatial scales. Following careful corrections, we are able to measure land-level changes in gravel-bed channels and steep hillslopes in the south-central Andes using the SRTM-C (collected in 2000) and the TanDEM-X (collected from 2010 to 2015) near-global 12-30m DEMs. Long-standing errors in the SRTM-C are corrected using the TanDEM-X as a control surface and applying cosine-fit co-registration to remove ∼ 1∕10 pixel (∼ 3m) shifts, fast Fourier transform (FFT) and filtering to remove SRTM-C short- and long-wavelength stripes, and blocked shifting to remove remaining complex biases. The datasets are then differenced and outlier pixels are identified as a potential signal for the case of gravel-bed channels and hillslopes. We are able to identify signals of incision and aggradation (with magnitudes down to ∼ 3m in the best case) in two  > 100km river reaches, with increased geomorphic activity downstream of knickpoints. Anthropogenic gravel excavation and piling is prominently measured, with magnitudes exceeding ±5m (up to  > 10m for large piles). These values correspond to conservative average rates of 0.2 to > 0.5myr-1 for vertical changes in gravel-bed rivers. For hillslopes, since we require stricter cutoffs for noise, we are only able to identify one major landslide in the study area with a deposit volume of 16±0.15×106m3. Additional signals of change can be garnered from TanDEM-X auxiliary layers; however, these are more difficult to quantify. The methods presented can be extended to any region of the world with SRTM-C and TanDEM-X coverage where vertical land-level changes are of interest, with the caveat that remaining vertical uncertainties in primarily the SRTM-C limit detection in steep and complex topography.}, language = {en} } @misc{OlatunjiKolawoleOloruntolaetal.2018, author = {Olatunji, Akinade S. and Kolawole, Tesleem O. and Oloruntola, Moroof and G{\"u}nter, Christina}, title = {Evaluation of pollution of soils and particulate matter around metal recycling factories in Southwestern Nigeria}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1074}, issn = {1866-8372}, doi = {10.25932/publishup-47156}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471560}, pages = {20 -- 30}, year = {2018}, abstract = {Background. Metal recycling factories (MRFs) have developed rapidly in Nigeria as recycling policies have been increasingly embraced. These MRFs are point sources for introducing potentially toxic elements (PTEs) into environmental media. Objectives. The aim of this study was to determine the constituents (elemental and mineralogy) of the wastes (slag and particulate matter, (PM)) and soils around the MRFs and to determine the level of pollution within the area. Methods. Sixty samples (30 slag samples, 15 soil samples and 15 PM samples) were collected for this study. The soils, slag and PM samples were analyzed for elemental constituents using inductively coupled plasma optical emission spectrometry. Mineralogy of the PM was determined using scanning electron microscope-energy dispersive spectroscopy (SEM-EDS), and soil mineralogy was determined by an X-ray diffractometer (XRD). Results. The results of the soil analyses revealed the following concentrations for the selected metals in mg/kg include lead (Pb) (21.0-2399.0), zinc (Zn) (56.0-4188.0), copper (Cu) (10.0-1470.0), nickel (Ni) (6.0-215.0), chromium (Cr) (921.0-1737.0) and cadmium (Cd) (below detectable limit (Bdl)-18.1). For the slags the results were Pb (68.0-.333.0), Zn (1364.0-3062), Cu (119.0-1470.0), Ni (12.0-675.0), Cr (297-1737) and Cd (Bdl-15.8). The results in µg/g for the metal analysis in PM were Pb (4.6-160.0), Zn (18.0-471.0), Cu (2.5-11.0), Ni (0.8-4.2), and Cr (2.5-11.0), while Cd was undetected. The slags are currently utilized for filling the foundations of buildings and roads, providing additional pathways for the introduction of PTEs into the environment from the suspended materials generated from mechanical breakdown of the slags. Conclusions. The MRFs were found to have impacted the quality of environmental media through the introduction of PTEs, impairing soil quality, in addition to PM, which can have detrimental health consequences. Further studies on the health implications of these pollutants and their impacts on human health are needed. Competing Interests. The authors declare no competing financial interests}, language = {en} } @misc{GholamrezaieScheckWenderothSippeletal.2018, author = {Gholamrezaie, Ershad and Scheck-Wenderoth, Magdalena and Sippel, Judith and Strecker, Manfred}, title = {Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409493}, pages = {19}, year = {2018}, abstract = {Abstract. The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.}, language = {en} } @phdthesis{Tofelde2018, author = {Tofelde, Stefanie}, title = {Signals stored in sediment}, doi = {10.25932/publishup-42716}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427168}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 172}, year = {2018}, abstract = {Tectonic and climatic boundary conditions determine the amount and the characteristics (size distribution and composition) of sediment that is generated and exported from mountain regions. On millennial timescales, rivers adjust their morphology such that the incoming sediment (Qs,in) can be transported downstream by the available water discharge (Qw). Changes in climatic and tectonic boundary conditions thus trigger an adjustment of the downstream river morphology. Understanding the sensitivity of river morphology to perturbations in boundary conditions is therefore of major importance, for example, for flood assessments, infrastructure and habitats. Although we have a general understanding of how rivers evolve over longer timescales, the prediction of channel response to changes in boundary conditions on a more local scale and over shorter timescales remains a major challenge. To better predict morphological channel evolution, we need to test (i) how channels respond to perturbations in boundary conditions and (ii) how signals reflecting the persisting conditions are preserved in sediment characteristics. This information can then be applied to reconstruct how local river systems have evolved over time. In this thesis, I address those questions by combining targeted field data collection in the Quebrada del Toro (Southern Central Andes of NW Argentina) with cosmogenic nuclide analysis and remote sensing data. In particular, I (1) investigate how information on hillslope processes is preserved in the 10Be concentration (geochemical composition) of fluvial sediments and how those signals are altered during downstream transport. I complement the field-based approach with physical experiments in the laboratory, in which I (2) explore how changes in sediment supply (Qs,in) or water discharge (Qw) generate distinct signals in the amount of sediment discharge at the basin outlet (Qs,out). With the same set of experiments, I (3) study the adjustments of alluvial channel morphology to changes in Qw and Qs,in, with a particular focus in fill-terrace formation. I transfer the findings from the experiments to the field to (4) reconstruct the evolution of a several-hundred meter thick fluvial fill-terrace sequence in the Quebrada del Toro. I create a detailed terrace chronology and perform reconstructions of paleo-Qs and Qw from the terrace deposits. In the following paragraphs, I summarize my findings on each of these four topics. First, I sampled detrital sediment at the outlet of tributaries and along the main stem in the Quebrada del Toro, analyzed their 10Be concentration ([10Be]) and compared the data to a detailed hillslope-process inventory. The often observed non-linear increase in catchment-mean denudation rate (inferred from [10Be] in fluvial sediment) with catchment-median slope, which has commonly been explained by an adjustment in landslide-frequency, coincided with a shift in the main type of hillslope processes. In addition, the [10Be] in fluvial sediments varied with grain-size. I defined the normalized sand-gravel-index (NSGI) as the 10Be-concentration difference between sand and gravel fractions divided by their summed concentrations. The NSGI increased with median catchment slope and coincided with a shift in the prevailing hillslope processes active in the catchments, thus making the NSGI a potential proxy for the evolution of hillslope processes over time from sedimentary deposits. However, the NSGI recorded hillslope-processes less well in regions of reduced hillslope-channel connectivity and, in addition, has the potential to be altered during downstream transport due to lateral sediment input, size-selective sediment transport and abrasion. Second, my physical experiments revealed that sediment discharge at the basin outlet (Qs,out) varied in response to changes in Qs,in or Qw. While changes in Qw caused a distinct signal in Qs,out during the transient adjustment phase of the channel to new boundary conditions, signals related to changes in Qs,in were buffered during the transient phase and likely only become apparent once the channel is adjusted to the new conditions. The temporal buffering is related to the negative feedback between Qs,in and channel-slope adjustments. In addition, I inferred from this result that signals extracted from the geochemical composition of sediments (e.g., [10Be]) are more likely to represent modern-day conditions during times of aggradation, whereas the signal will be temporally buffered due to mixing with older, remobilized sediment during times of channel incision. Third, the same set of experiments revealed that river incision, channel-width narrowing and terrace cutting were initiated by either an increase in Qw, a decrease in Qs,in or a drop in base level. The lag-time between the external perturbation and the terrace cutting determined (1) how well terrace surfaces preserved the channel profile prior to perturbation and (2) the degree of reworking of terrace-surface material. Short lag-times and well preserved profiles occurred in cases with a rapid onset of incision. Also, lag-times were synchronous along the entire channel after upstream perturbations (Qw, Qs,in), whereas base-level fall triggered an upstream migrating knickzone, such that lag-times increased with distance upstream. Terraces formed after upstream perturbations (Qw, Qs,in) were always steeper when compared to the active channel in new equilibrium conditions. In the base-level fall experiment, the slope of the terrace-surfaces and the modern channel were similar. Hence, slope comparisons between the terrace surface and the modern channel can give insights into the mechanism of terrace formation. Fourth, my detailed terrace-formation chronology indicated that cut-and-fill episodes in the Quebrada del Toro followed a ~100-kyr cyclicity, with the oldest terraces ~ 500 kyr old. The terraces were formed due to variability in upstream Qw and Qs. Reconstructions of paleo-Qs over the last 500 kyr, which were restricted to times of sediment deposition, indicated only minor (up to four-fold) variations in paleo-denudation rates. Reconstructions of paleo-Qw were limited to the times around the onset of river incision and revealed enhanced discharge from 10 to 85\% compared to today. Such increases in Qw are in agreement with other quantitative paleo-hydrological reconstructions from the Eastern Andes, but have the advantage of dating further back in time.}, language = {en} } @phdthesis{Behrens2018, author = {Behrens, Ricarda}, title = {Causes for slow weathering and erosion in the steep, warm, monsoon-subjected Highlands of Sri Lanka}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408503}, school = {Universit{\"a}t Potsdam}, pages = {ix, 107, XXIV}, year = {2018}, abstract = {In the Highlands of Sri Lanka, erosion and chemical weathering rates are among the lowest for global mountain denudation. In this tropical humid setting, highly weathered deep saprolite profiles have developed from high-grade metamorphic charnockite during spheroidal weathering of the bedrock. The spheroidal weathering produces rounded corestones and spalled rindlets at the rock-saprolite interface. I used detailed textural, mineralogical, chemical, and electron-microscopic (SEM, FIB, TEM) analyses to identify the factors limiting the rate of weathering front advance in the profile, the sequence of weathering reactions, and the underlying mechanisms. The first mineral attacked by weathering was found to be pyroxene initiated by in situ Fe oxidation, followed by in situ biotite oxidation. Bulk dissolution of the primary minerals is best described with a dissolution - re-precipitation process, as no chemical gradients towards the mineral surface and sharp structural boundaries are observed at the nm scale. Only the local oxidation in pyroxene and biotite is better described with an ion by ion process. The first secondary phases are oxides and amorphous precipitates from which secondary minerals (mainly smectite and kaolinite) form. Only for biotite direct solid state transformation to kaolinite is likely. The initial oxidation of pyroxene and biotite takes place in locally restricted areas and is relatively fast: log J = -11 molmin/(m2 s). However, calculated corestone-scale mineral oxidation rates are comparable to corestone-scale mineral dissolution rates: log R = -13 molpx/(m2 s) and log R = -15 molbt/(m2 s). The oxidation reaction results in a volume increase. Volumetric calculations suggest that this observed oxidation leads to the generation of porosity due to the formation of micro-fractures in the minerals and the bedrock allowing for fluid transport and subsequent dissolution of plagioclase. At the scale of the corestone, this fracture reaction is responsible for the larger fractures that lead to spheroidal weathering and to the formation of rindlets. Since these fractures have their origin from the initial oxidational induced volume increase, oxidation is the rate limiting parameter for weathering to take place. The ensuing plagioclase weathering leads to formation of high secondary porosity in the corestone over a distance of only a few cm and eventually to the final disaggregation of bedrock to saprolite. As oxidation is the first weathering reaction, the supply of O2 is a rate-limiting factor for chemical weathering. Hence, the supply of O2 and its consumption at depth connects processes at the weathering front with erosion at the surface in a feedback mechanism. The strength of the feedback depends on the relative weight of advective versus diffusive transport of O2 through the weathering profile. The feedback will be stronger with dominating diffusive transport. The low weathering rate ultimately depends on the transport of O2 through the whole regolith, and on lithological factors such as low bedrock porosity and the amount of Fe-bearing primary minerals. In this regard the low-porosity charnockite with its low content of Fe(II) bearing minerals impedes fast weathering reactions. Fresh weatherable surfaces are a pre-requisite for chemical weathering. However, in the case of the charnockite found in the Sri Lankan Highlands, the only process that generates these surfaces is the fracturing induced by oxidation. Tectonic quiescence in this region and low pre-anthropogenic erosion rate (attributed to a dense vegetation cover) minimize the rejuvenation of the thick and cohesive regolith column, and lowers weathering through the feedback with erosion.}, language = {en} } @misc{Reger2018, type = {Master Thesis}, author = {Reger, Carolin}, title = {Dating of alluvial fans from NW Argentina using cosmogenic nuclides and optically stimulated luminescence technique}, doi = {10.25932/publishup-47147}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471470}, school = {Universit{\"a}t Potsdam}, pages = {4, IV}, year = {2018}, abstract = {Alluvial fans are important geomorphic markers and sedimentary archives of tectonic and climatic changes. Hence, basins providing perfect studying conditions can often be found in arid regions due to the low weathering impact and thus well preservation of sedimentary features. Twelve samples for optically/infrared stimulated luminescence (OSL/IRSL) dating and one depth profile for cosmogenic radionuclide dating (10Be) were collected in the Santa Maria Valley in NW Argentina, where the exceptional preservation of several generations of alluvial fans allow exploring the external forcing conditions that led to repeated cycles of incision and aggradation. The results of the OSL/IRSL dating yielded ages ranging between 0.4 ± 0.1 ka and 271.8 ± 24.5 ka. Previous studies next to the study area indicate a depositional age of 1.5-2 Mio years for the oldest generation of alluvial fans, which might still be supported by our ongoing 10Be dating. Due to field observations, sediment provenance, stratigraphic characteristics and the geomorphic pattern of erosion, seven (/eight) generations of alluvial fan deposits were recognized. Comparing my ages with global glaciation cycles as well as linking them to temperature proxies retrieved from a lake on the Altiplano Plateau, a good fit between alluvial fan accumulation phases and global glacial periods (corresponding to cold/wet phases within the central Andes) is observed. This suggests that aggradation occurs during the early stages of glacial periods, while incision is expected at the end of glacial phases. This pattern might be linked to variations in the vegetational cover (controlled by water availability), which will decrease/increase during hot and dry/cold and wet interglacial/glacial phases favoring/limiting sediment production and will increase/decrease during cold and wet/hot and dry glacial/interglacial phases. Even though the eastern Andean margin is showing neotectonic activities and is assumed to be active up to recent times, deformation and seismicity might most probably have played only a minor role in relation to the rather short timescale reflected by the data.}, language = {en} } @phdthesis{Eugster2018, author = {Eugster, Patricia}, title = {Landscape evolution in the western Indian Himalaya since the Miocene}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420329}, school = {Universit{\"a}t Potsdam}, pages = {XXI, 208}, year = {2018}, abstract = {The Himalayan arc stretches >2500 km from east to west at the southern edge of the Tibetan Plateau, representing one of the most important Cenozoic continent-continent collisional orogens. Internal deformation processes and climatic factors, which drive weathering, denudation, and transport, influence the growth and erosion of the orogen. During glacial times wet-based glaciers sculpted the mountain range and left overdeepend and U-shaped valleys, which were backfilled during interglacial times with paraglacial sediments over several cycles. These sediments partially still remain within the valleys because of insufficient evacuation capabilities into the foreland. Climatic processes overlay long-term tectonic processes responsible for uplift and exhumation caused by convergence. Possible processes accommodating convergence within the orogenic wedge along the main Himalayan faults, which divide the range into four major lithologic units, are debated. In this context, the identification of processes shaping the Earth's surface on short- and on long-term are crucial to understand the growth of the orogen and implications for landscape development in various sectors along the arc. This thesis focuses on both surface and tectonic processes that shape the landscape in the western Indian Himalaya since late Miocene. In my first study, I dated well-preserved glacially polished bedrock on high-elevated ridges and valley walls in the upper of the Chandra Valley the by means of 10Be terrestrial cosmogenic radionuclides (TCN). I used these ages and mapped glacial features to reconstruct the extent and timing of Pleistocene glaciation at the southern front of the Himalaya. I was able to reconstruct an extensive valley glacier of ~200 km length and >1000 m thickness. Deglaciation of the Chandra Valley glacier started subsequently to insolation increase on the Northern Hemisphere and thus responded to temperature increase. I showed that the timing this deglaciation onset was coeval with retreat of further midlatitude glaciers on the Northern and Southern Hemispheres. These comparisons also showed that the post-LGM deglaciation very rapid, occurred within a few thousand years, and was nearly finished prior to the B{\o}lling/Aller{\o}d interstadial. A second study (co-authorship) investigates how glacial advances and retreats in high mountain environments impact the landscape. By 10Be TCN dating and geomorphic mapping, we obtained maximal length and height of the Siachen Glacier within the Nubra Valley. Today the Shyok and Nubra confluence is backfilled with sedimentary deposits, which are attributed to the valley blocking of the Siachen Glacier 900 m above the present day river level. A glacial dam of the Siachen Glacier blocked the Shyok River and lead to the evolution of a more than 20 km long lake. Fluvial and lacustrine deposits in the valley document alternating draining and filling cycles of the lake dammed by the Siachen Glacier. In this study, we can show that glacial incision was outpacing fluvial incision. In the third study, which spans the million-year timescale, I focus on exhumation and erosion within the Chandra and Beas valleys. In this study the position and discussed possible reasons of rapidly exhuming rocks, several 100-km away from one of the main Himalayan faults (MFT) using Apatite Fission Track (AFT) thermochronometry. The newly gained AFT ages indicate rapid exhumation and confirm earlier studies in the Chandra Valley. I assume that the rapid exhumation is most likely related to uplift over subsurface structures. I tested this hypothesis by combining further low-temperature thermochronometers from areas east and west of my study area. By comparing two transects, each parallel to the Beas/Chandra Valley transect, I demonstrate similarities in the exhumation pattern to transects across the Sutlej region, and strong dissimilarities in the transect crossing the Dhauladar Range. I conclude that the belt of rapid exhumation terminates at the western end of the Kullu-Rampur window. Therewith, I corroborate earlier studies suggesting changes in exhumation behavior in the western Himalaya. Furthermore, I discussed several causes responsible for the pronounced change in exhumation patterns along strike: 1) the role of inherited pre-collisional features such as the Proterozoic sedimentary cover of the Indian basement, former ridges and geological structures, and 2) the variability of convergence rates along the Himalayan arc due to an increased oblique component towards the syntaxis. The combination of field observations (geological and geomorphological mapping) and methods to constrain short- and long-term processes (10Be, AFT) help to understand the role of the individual contributors to exhumation and erosion in the western Indian Himalaya. With the results of this thesis, I emphasize the importance of glacial and tectonic processes in shaping the landscape by driving exhumation and erosion in the studied areas.}, language = {en} } @phdthesis{Agarwal2018, author = {Agarwal, Ankit}, title = {Unraveling spatio-temporal climatic patterns via multi-scale complex networks}, doi = {10.25932/publishup-42395}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423956}, school = {Universit{\"a}t Potsdam}, pages = {xxix, 153}, year = {2018}, abstract = {The climate is a complex dynamical system involving interactions and feedbacks among different processes at multiple temporal and spatial scales. Although numerous studies have attempted to understand the climate system, nonetheless, the studies investigating the multiscale characteristics of the climate are scarce. Further, the present set of techniques are limited in their ability to unravel the multi-scale variability of the climate system. It is completely plausible that extreme events and abrupt transitions, which are of great interest to climate community, are resultant of interactions among processes operating at multi-scale. For instance, storms, weather patterns, seasonal irregularities such as El Ni{\~n}o, floods and droughts, and decades-long climate variations can be better understood and even predicted by quantifying their multi-scale dynamics. This makes a strong argument to unravel the interaction and patterns of climatic processes at different scales. With this background, the thesis aims at developing measures to understand and quantify multi-scale interactions within the climate system. In the first part of the thesis, I proposed two new methods, viz, multi-scale event synchronization (MSES) and wavelet multi-scale correlation (WMC) to capture the scale-specific features present in the climatic processes. The proposed methods were tested on various synthetic and real-world time series in order to check their applicability and replicability. The results indicate that both methods (WMC and MSES) are able to capture scale-specific associations that exist between processes at different time scales in a more detailed manner as compared to the traditional single scale counterparts. In the second part of the thesis, the proposed multi-scale similarity measures were used in constructing climate networks to investigate the evolution of spatial connections within climatic processes at multiple timescales. The proposed methods WMC and MSES, together with complex network were applied to two different datasets. In the first application, climate networks based on WMC were constructed for the univariate global sea surface temperature (SST) data to identify and visualize the SSTs patterns that develop very similarly over time and distinguish them from those that have long-range teleconnections to other ocean regions. Further investigations of climate networks on different timescales revealed (i) various high variability and co-variability regions, and (ii) short and long-range teleconnection regions with varying spatial distance. The outcomes of the study not only re-confirmed the existing knowledge on the link between SST patterns like El Ni{\~n}o Southern Oscillation and the Pacific Decadal Oscillation, but also suggested new insights into the characteristics and origins of long-range teleconnections. In the second application, I used the developed non-linear MSES similarity measure to quantify the multivariate teleconnections between extreme Indian precipitation and climatic patterns with the highest relevance for Indian sub-continent. The results confirmed significant non-linear influences that were not well captured by the traditional methods. Further, there was a substantial variation in the strength and nature of teleconnection across India, and across time scales. Overall, the results from investigations conducted in the thesis strongly highlight the need for considering the multi-scale aspects in climatic processes, and the proposed methods provide robust framework for quantifying the multi-scale characteristics.}, language = {en} } @misc{AlHalbouniHolohanTaherietal.2018, author = {Al-Halbouni, Djamil and Holohan, Eoghan P. and Taheri, Abbas and Sch{\"o}pfer, Martin P. J. and Emam, Sacha and Dahm, Torsten}, title = {Geomechanical modelling of sinkhole development using distinct elements}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1061}, issn = {1866-8372}, doi = {10.25932/publishup-46843}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468435}, pages = {35}, year = {2018}, abstract = {Mechanical and/or chemical removal of material from the subsurface may generate large subsurface cavities, the destabilisation of which can lead to ground collapse and the formation of sinkholes. Numerical simulation of the interaction of cavity growth, host material deformation and overburden collapse is desirable to better understand the sinkhole hazard but is a challenging task due to the involved high strains and material discontinuities. Here, we present 2-D distinct element method numerical simulations of cavity growth and sinkhole development. Firstly, we simulate cavity formation by quasi-static, stepwise removal of material in a single growing zone of an arbitrary geometry and depth. We benchmark this approach against analytical and boundary element method models of a deep void space in a linear elastic material. Secondly, we explore the effects of properties of different uniform materials on cavity stability and sinkhole development. We perform simulated biaxial tests to calibrate macroscopic geotechnical parameters of three model materials representative of those in which sinkholes develop at the Dead Sea shoreline: mud, alluvium and salt. We show that weak materials do not support large cavities, leading to gradual sagging or suffusion-style subsidence. Strong materials support quasi-stable to stable cavities, the overburdens of which may fail suddenly in a caprock or bedrock collapse style. Thirdly, we examine the consequences of layered arrangements of weak and strong materials. We find that these are more susceptible to sinkhole collapse than uniform materials not only due to a lower integrated strength of the overburden but also due to an inhibition of stabilising stress arching. Finally, we compare our model sinkhole geometries to observations at the Ghor Al-Haditha sinkhole site in Jordan. Sinkhole depth ∕ diameter ratios of 0.15 in mud, 0.37 in alluvium and 0.33 in salt are reproduced successfully in the calibrated model materials. The model results suggest that the observed distribution of sinkhole depth ∕ diameter values in each material type may partly reflect sinkhole growth trends.}, language = {en} } @phdthesis{Hesse2018, author = {Hesse, Cornelia}, title = {Integrated water quality modelling in meso- to large-scale catchments of the Elbe river basin under climate and land use change}, doi = {10.25932/publishup-42295}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422957}, school = {Universit{\"a}t Potsdam}, pages = {ix, 217}, year = {2018}, abstract = {In einer sich {\"a}ndernden Umwelt sind Fließgew{\"a}sser{\"o}kosysteme vielf{\"a}ltigen direkten und indirekten anthropogenen Belastungen ausgesetzt, die die Gew{\"a}sser sowohl in ihrer Menge als auch in ihrer G{\"u}te beeintr{\"a}chtigen k{\"o}nnen. Ein {\"u}berm{\"a}ßiger Eintrag von N{\"a}hrstoffen verursacht etwa Massenentwicklungen von Algen und Sauerstoffdefizite in den Gew{\"a}ssern, was zum Verfehlen der Ziele der Wasserrahmenrichtlinie (WRRL) f{\"u}hren kann. In vielen europ{\"a}ischen Einzugsgebieten und auch dem der Elbe sind solche Probleme zu beobachten. W{\"a}hrend der letzten Jahrzehnte entstanden diverse computergest{\"u}tzte Modelle, die zum Schutz und Management von Wasserressourcen genutzt werden k{\"o}nnen. Sie helfen beim Verstehen der N{\"a}hrstoffprozesse und Belastungspfade in Einzugsgebieten, bei der Absch{\"a}tzung m{\"o}glicher Folgen von Klima- und Landnutzungs{\"a}nderungen f{\"u}r die Wasserk{\"o}rper, sowie bei der Entwicklung eventueller Kompensationsmaßnahmen. Aufgrund der Vielzahl an sich gegenseitig beeinflussenden Prozessen ist die Modellierung der Wasserqualit{\"a}t komplexer und aufw{\"a}ndiger als eine reine hydrologische Modellierung. {\"O}kohydrologische Modelle zur Simulation der Gew{\"a}sserg{\"u}te, einschließlich des Modells SWIM (Soil and Water Integrated Model), bed{\"u}rfen auch h{\"a}ufig noch einer Weiterentwicklung und Verbesserung der Prozessbeschreibungen. Aus diesen {\"U}berlegungen entstand die vorliegende Dissertation, die sich zwei Hauptanliegen widmet: 1) einer Weiterentwicklung des N{\"a}hrstoffmoduls des {\"o}kohydrologischen Modells SWIM f{\"u}r Stickstoff- und Phosphorprozesse, und 2) der Anwendung des Modells SWIM im Elbegebiet zur Unterst{\"u}tzung eines anpassungsf{\"a}higen Wassermanagements im Hinblick auf m{\"o}gliche zuk{\"u}nftige {\"A}nderungen der Umweltbedingungen. Die kumulative Dissertation basiert auf f{\"u}nf wissenschaftlichen Artikeln, die in internationalen Zeitschriften ver{\"o}ffentlicht wurden. Im Zuge der Arbeit wurden verschiedene Modellanpassungen in SWIM vorgenommen, wie etwa ein einfacher Ansatz zur Verbesserung der Simulation der Wasser- und N{\"a}hrstoffverh{\"a}ltnisse in Feuchtgebieten, ein um Ammonium erweiterter Stickstoffkreislauf im Boden, sowie ein Flussprozessmodul, das Umwandlungsprozesse, Sauerstoffverh{\"a}ltnisse und Algenwachstum im Fließgew{\"a}sser simuliert, haupts{\"a}chlich angetrieben von Temperatur und Licht. Auch wenn dieser neue Modellansatz ein sehr komplexes Modell mit einer Vielzahl an neuen Kalibrierungsparametern und steigender Unsicherheit erzeugte, konnten gute Ergebnisse in den Teileinzugsgebieten und dem gesamten Gebiet der Elbe erzielt werden, so dass das Modell zur Absch{\"a}tzung m{\"o}glicher Folgen von Klimavariabilit{\"a}ten und ver{\"a}nderten anthropogenen Einfl{\"u}ssen f{\"u}r die Gew{\"a}sserg{\"u}te genutzt werden konnte. Das neue Fließgew{\"a}ssermodul ist ein wichtiger Beitrag zur Verbesserung der N{\"a}hrstoffmodellierung in SWIM, vor allem f{\"u}r Stoffe, die haupts{\"a}chlich aus Punktquellen in die Gew{\"a}sser gelangen (wie z.B. Phosphat). Der neue Modellansatz verbessert zudem die Anwendbarkeit von SWIM f{\"u}r Fragestellungen im Zusammenhang mit der WRRL, bei der biologische Qualit{\"a}tskomponenten (wie etwa Phytoplankton) eine zentrale Rolle spielen. Die dargestellten Ergebnisse der Wirkungsstudien k{\"o}nnen bei Entscheidungstr{\"a}gern und anderen Akteuren das Verst{\"a}ndnis f{\"u}r zuk{\"u}nftige Herausforderungen im Gew{\"a}ssermanagement erh{\"o}hen und dazu beitragen, ein angepasstes Management f{\"u}r das Elbeeinzugsgebiet zu entwickeln.}, language = {en} } @misc{PolomAlrshdanAlHalbounietal.2018, author = {Polom, Ulrich and Alrshdan, Hussam and Al-Halbouni, Djamil and Holohan, Eoghan P. and Dahm, Torsten and Sawarieh, Ali and Atallah, Mohamad Y. and Krawczyk, Charlotte M.}, title = {Shear wave reflection seismic yields subsurface dissolution and subrosion patterns}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {979}, issn = {1866-8372}, doi = {10.25932/publishup-45913}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459134}, pages = {1079 -- 1098}, year = {2018}, abstract = {Near-surface geophysical imaging of alluvial fan settings is a challenging task but crucial for understating geological processes in such settings. The alluvial fan of Ghor Al-Haditha at the southeast shore of the Dead Sea is strongly affected by localized subsidence and destructive sinkhole collapses, with a significantly increasing sinkhole formation rate since ca. 1983. A similar increase is observed also on the western shore of the Dead Sea, in correlation with an ongoing decline in the Dead Sea level. Since different structural models of the upper 50 m of the alluvial fan and varying hypothetical sinkhole processes have been suggested for the Ghor Al-Haditha area in the past, this study aimed to clarify the subsurface characteristics responsible for sinkhole development. For this purpose, high-frequency shear wave reflection vibratory seismic surveys were carried out in the Ghor Al-Haditha area along several crossing and parallel profiles with a total length of 1.8 and 2.1 km in 2013 and 2014, respectively. The sedimentary architecture of the alluvial fan at Ghor Al-Haditha is resolved down to a depth of nearly 200 m at a high resolution and is calibrated with the stratigraphic profiles of two boreholes located inside the survey area. The most surprising result of the survey is the absence of evidence of a thick (> 2-10 m) compacted salt layer formerly suggested to lie at ca. 35-40 m depth. Instead, seismic reflection amplitudes and velocities image with good continuity a complex interlocking of alluvial fan deposits and lacustrine sediments of the Dead Sea between 0 and 200 m depth. Furthermore, the underground section of areas affected by sinkholes is characterized by highly scattering wave fields and reduced seismic interval velocities. We propose that the Dead Sea mud layers, which comprise distributed inclusions or lenses of evaporitic chloride, sulfate, and carbonate minerals as well as clay silicates, become increasingly exposed to unsaturated water as the sea level declines and are consequently destabilized and mobilized by both dissolution and physical erosion in the subsurface. This new interpretation of the underlying cause of sinkhole development is supported by surface observations in nearby channel systems. Overall, this study shows that shear wave seismic reflection technique is a promising method for enhanced near-surface imaging in such challenging alluvial fan settings.}, language = {en} } @phdthesis{Genderjahn2018, author = {Genderjahn, Steffi}, title = {Biosignatures of Present and Past Microbial Life in Southern African Geoarchives}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410110}, school = {Universit{\"a}t Potsdam}, pages = {XI, 166, xxii}, year = {2018}, abstract = {Global climate change is one of the greatest challenges of the 21st century, with influence on the environment, societies, politics and economies. The (semi-)arid areas of Southern Africa already suffer from water scarcity. There is a great variety of ongoing research related to global climate history but important questions on regional differences still exist. In southern African regions terrestrial climate archives are rare, which makes paleoclimate studies challenging. Based on the assumption that continental pans (sabkhas) represent a suitable geo-archive for the climate history, two different pans were studied in the southern and western Kalahari Desert. A combined approach of molecular biological and biogeochemical analyses is utilized to investigate the diversity and abundance of microorganisms and to trace temporal and spatial changes in paleoprecipitation in arid environments. The present PhD thesis demonstrates the applicability of pan sediments as a late Quaternary geo-archive based on microbial signature lipid biomarkers, such as archaeol, branched and isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) as well as phospholipid fatty acids (PLFA). The microbial signatures contained in the sediment provide information on the current or past microbial community from the Last Glacial Maximum to the recent epoch, the Holocene. The results are discussed in the context of regional climate evolution in southwestern Africa. The seasonal shift of the Innertropical Convergence Zone (ITCZ) along the equator influences the distribution of precipitation- and climate zones. The different expansion of the winter- and summer rainfall zones in southern Africa was confirmed by the frequency of certain microbial biomarkers. A period of increased precipitation in the south-western Kalahari could be described as a result of the extension of the winter rainfall zone during the last glacial maximum (21 ± 2 ka). Instead a period of increased paleoprecipitation in the western Kalahari was indicated during the Late Glacial to Holocene transition. This was possibly caused by a southwestern shift in the position of the summer rainfall zone associated to the southward movement of the ITCZ. Furthermore, for the first time this study characterizes the bacterial and archaeal life based on 16S rRNA gene high-throughput sequencing in continental pan sediments and provides an insight into the recent microbial community structure. Near-surface processes play an important role for the modern microbial ecosystem in the pans. Water availability as well as salinity might determine the abundance and composition of the microbial communities. The microbial community of pan sediments is dominated by halophilic and dry-adapted archaea and bacteria. Frequently occurring microorganisms such as, Halobacteriaceae, Bacillus and Gemmatimonadetes are described in more detail in this study.}, language = {en} } @inproceedings{OPUS4-41661, title = {International Conference on "Natural Hazards and Risks in a Changing World"}, series = {Book of Abstracts}, booktitle = {Book of Abstracts}, editor = {Petrow, Theresia and Bronstert, Axel and Thieken, Annegret and Vogel, Kristin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-416613}, pages = {118}, year = {2018}, abstract = {Natural hazards such as floods, earthquakes, landslides, and multi-hazard events heavily affect human societies and call for better management strategies. Due to the severity of such events, it is of utmost importance to understand whether and how they change in re-sponse to evolving hydro-climatological, geo-physical and socio-economic conditions. These conditions jointly determine the magnitude, frequency, and impact of disasters, and are changing in response to climate change and human behavior. Therefore methods are need-ed for hazard and risk quantification accounting for the transient nature of hazards and risks in response to changing natural and anthropogenic altered systems. The purpose of this conference is to bring together researchers from natural sciences (e.g. hydrology, meteorology, geomorphology, hydraulic engineering, environmental science, seismology, geography), risk research, nonlinear systems dynamics, and applied mathematics to discuss new insights and developments about data science, changing systems, multi-hazard events and the linkage between hazard and vulnerabilities under unstable environmental conditions. Knowledge transfer, communication and networking will be key issues of the conference. The conference is organized by means of invited talks given by outstanding experts, oral presentations, poster sessions and discussions.}, language = {en} } @misc{LiuKaempfBussertetal.2018, author = {Liu, Qi and K{\"a}mpf, Horst and Bussert, Robert and Krauze, Patryk and Horn, Fabian and Nickschick, Tobias and Plessen, Birgit and Wagner, Dirk and Alawi, Mashal}, title = {Influence of CO2 degassing on the microbial community in a dry mofette field in Hartoušov, Czech Republic (Western Eger Rift)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1100}, issn = {1866-8372}, doi = {10.25932/publishup-47115}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471153}, pages = {19}, year = {2018}, abstract = {The Cheb Basin (CZ) is a shallow Neogene intracontinental basin filled with fluvial and lacustrine sediments that is located in the western part of the Eger Rift. The basin is situated in a seismically active area and is characterized by diffuse degassing of mantle-derived CO2 in mofette fields. The Hartousov mofette field shows a daily CO2 flux of 23-97 tons of CO2 released over an area of 0.35 km(2) and a soil gas concentration of up to 100\% CO2. The present study aims to explore the geo-bio interactions provoked by the influence of elevated CO2 concentrations on the geochemistry and microbial community of soils and sediments. To sample the strata, two 3-m cores were recovered. One core stems from the center of the degassing structure, whereas the other core was taken 8 m from the ENE and served as an undisturbed reference site. The sites were compared regarding their geochemical features, microbial abundances, and microbial community structures. The mofette site is characterized by a low pH and high TOC/sulfate contents. Striking differences in the microbial community highlight the substantial impact of elevated CO2 concentrations and their associated side effects on microbial processes. The abundance of microbes did not show a typical decrease with depth, indicating that the uprising CO2-rich fluid provides sufficient substrate for chemolithoautotrophic anaerobic microorganisms. Illumine MiSeq sequencing of the 16S rRNA genes and multivariate statistics reveals that the pH strongly influences microbial composition and explains around 38.7\% of the variance at the mofette site and 22.4\% of the variance between the mofette site and the undisturbed reference site. Accordingly, acidophilic microorganisms (e.g., OTUs assigned to Acidobacteriaceae and Acidithiobacillus) displayed a much higher relative abundance at the mofette site than at the reference site. The microbial community at the mofette site is characterized by a high relative abundance of methanogens and taxa involved in sulfur cycling. The present study provides intriguing insights into microbial life and geo-bio interactions in an active seismic region dominated by emanating mantle-derived CO2-rich fluids, and thereby builds the basis for further studies, e.g., focusing on the functional repertoire of the communities. However, it remains open if the observed patterns can be generalized for different time-points or sites.}, language = {en} } @misc{GenderjahnAlawiMangelsdorfetal.2018, author = {Genderjahn, Steffi and Alawi, Mashal and Mangelsdorf, Kai and Horn, Fabian and Wagner, Dirk}, title = {Desiccation- and saline-tolerant bacteria and archaea in Kalahari pan sediments}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {993}, issn = {1866-8372}, doi = {10.25932/publishup-45915}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459154}, pages = {17}, year = {2018}, abstract = {More than 41\% of the Earth's land area is covered by permanent or seasonally arid dryland ecosystems. Global development and human activity have led to an increase in aridity, resulting in ecosystem degradation and desertification around the world. The objective of the present work was to investigate and compare the microbial community structure and geochemical characteristics of two geographically distinct saline pan sediments in the Kalahari Desert of southern Africa. Our data suggest that these microbial communities have been shaped by geochemical drivers, including water content, salinity, and the supply of organic matter. Using Illumina 16S rRNA gene sequencing, this study provides new insights into the diversity of bacteria and archaea in semi-arid, saline, and low-carbon environments. Many of the observed taxa are halophilic and adapted to water-limiting conditions. The analysis reveals a high relative abundance of halophilic archaea (primarily Halobacteria), and the bacterial diversity is marked by an abundance of Gemmatimonadetes and spore-forming Firmicutes. In the deeper, anoxic layers, candidate division MSBL1, and acetogenic bacteria (Acetothermia) are abundant. Together, the taxonomic information and geochemical data suggest that acetogenesis could be a prevalent form of metabolism in the deep layers of a saline pan.}, language = {en} } @misc{JongejansStraussLenzetal.2018, author = {Jongejans, Loeka Laura and Strauss, Jens and Lenz, Josefine and Peterse, Francien and Mangelsdorf, Kai and Fuchs, Matthias and Grosse, Guido}, title = {Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {20}, issn = {1866-8372}, doi = {10.25932/publishup-44625}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446250}, pages = {6033 -- 6048}, year = {2018}, abstract = {As Arctic warming continues and permafrost thaws, more soil and sedimentary organic matter (OM) will be decomposed in northern high latitudes. Still, uncertainties remain in the quality of the OM and the size of the organic carbon (OC) pools stored in different deposit types of permafrost landscapes. This study presents OM data from deep permafrost and lake deposits on the Baldwin Peninsula which is located in the southern portion of the continuous permafrost zone in west Alaska. Sediment samples from yedoma and drained thermokarst lake basin (DTLB) deposits as well as thermokarst lake sediments were analyzed for cryostratigraphical and biogeochemical parameters and their lipid biomarker composition to identify the below-ground OC pool size and OM quality of ice-rich permafrost on the Baldwin Peninsula. We provide the first detailed characterization of yedoma deposits on Baldwin Peninsula. We show that three-quarters of soil OC in the frozen deposits of the study region (total of 68 Mt) is stored in DTLB deposits (52 Mt) and one-quarter in the frozen yedoma deposits (16 Mt). The lake sediments contain a relatively small OC pool (4 Mt), but have the highest volumetric OC content (93 kgm(-3)) compared to the DTLB (35 kgm(-3)) and yedoma deposits (8 kgm(-3)), largely due to differences in the ground ice content. The biomarker analysis indicates that the OM in both yedoma and DTLB deposits is mainly of terrestrial origin. Nevertheless, the relatively high carbon preference index of plant leaf waxes in combination with a lack of a degradation trend with depth in the yedoma deposits indi-cates that OM stored in yedoma is less degraded than that stored in DTLB deposits. This suggests that OM in yedoma has a higher potential for decomposition upon thaw, despite the relatively small size of this pool. These findings show that the use of lipid biomarker analysis is valuable in the assessment of the potential future greenhouse gas emissions from thawing permafrost, especially because this area, close to the discontinuous permafrost boundary, is projected to thaw substantially within the 21st century.}, language = {en} } @phdthesis{Platz2018, author = {Platz, Anna}, title = {Novel pre-stack data confinement and selection for magnetotelluric data processing and its application to data of the Eastern Karoo Basin, South Africa}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415087}, school = {Universit{\"a}t Potsdam}, pages = {xx, 1131}, year = {2018}, abstract = {Magnetotellurics (MT) is a geophysical method that is able to image the electrical conductivity structure of the subsurface by recording time series of natural electromagnetic (EM) field variations. During the data processing these time series are divided into small segments and for each segment spectral values are computed which are typically averaged in a statistical manner to obtain MT transfer functions. Unfortunately, the presence of man-made EM noise sources often deteriorates a significant amount of the recorded time series resulting in disturbed transfer functions. Many advanced processing techniques, e.g. robust statistics, pre-stack data selection or remote reference, have been developed to tackle this problem. The first two techniques reduce the amount of outliers and noise in the data whereas the latter approach removes noise by using data from another MT station. However, especially in populated regions the data processing is still quite challenging even with these approaches. In this thesis, I present two novel pre-stack data confinement and selection criteria for the detection of outliers and noise affected data based on (i) a distance measure of each data segment with regard to the entire sample distribution and (ii) the evaluation of the magnetic polarisation direction of all segments. The first criterion is able to remove data points that scatter around the desired MT distribution and furthermore it can, under some circumstances, even reject complete data cluster originating from noise sources. The second criterion eliminates data points caused by a strongly polarised magnetic signal. Both criteria have been successfully applied to many stations with different noise contaminations showing that they can significantly improve the transfer function estimation. The novel criteria were used to evaluate a MT data set from the Eastern Karoo Basin in South Africa. The corresponding field experiment is part of an extensive research programme to collect information of the current e.g. geological setting in this region prior to a potential shale gas exploitation. The aim was to investigate whether a three-dimensional (3D) inversion of the newly measured data fosters a more realistic mapping of physical properties of the target horizon. For this purpose, a comprehensive 3D model was derived by using all available data. In a second step, I analysed parameters of the target horizon, e.g. its conductivity, that are proxies for physical properties such as thermal maturity and porosity.}, language = {en} } @phdthesis{Angermann2018, author = {Angermann, Lisa}, title = {Hillslope-stream connectivity across scales}, doi = {10.25932/publishup-42454}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424542}, school = {Universit{\"a}t Potsdam}, pages = {xix, 193}, year = {2018}, abstract = {The concept of hydrologic connectivity summarizes all flow processes that link separate regions of a landscape. As such, it is a central theme in the field of catchment hydrology, with influence on neighboring disciplines such as ecology and geomorphology. It is widely acknowledged to be an important key in understanding the response behavior of a catchment and has at the same time inspired research on internal processes over a broad range of scales. From this process-hydrological point of view, hydrological connectivity is the conceptual framework to link local observations across space and scales. This is the context in which the four studies this thesis comprises of were conducted. The focus was on structures and their spatial organization as important control on preferential subsurface flow. Each experiment covered a part of the conceptualized flow path from hillslopes to the stream: soil profile, hillslope, riparian zone, and stream. For each study site, the most characteristic structures of the investigated domain and scale, such as slope deposits and peat layers were identified based on preliminary or previous investigations or literature reviews. Additionally, further structural data was collected and topographical analyses were carried out. Flow processes were observed either based on response observations (soil moisture changes or discharge patterns) or direct measurement (advective heat transport). Based on these data, the flow-relevance of the characteristic structures was evaluated, especially with regard to hillslope to stream connectivity. Results of the four studies revealed a clear relationship between characteristic spatial structures and the hydrological behavior of the catchment. Especially the spatial distribution of structures throughout the study domain and their interconnectedness were crucial for the establishment of preferential flow paths and their relevance for large-scale processes. Plot and hillslope-scale irrigation experiments showed that the macropores of a heterogeneous, skeletal soil enabled preferential flow paths at the scale of centimeters through the otherwise unsaturated soil. These flow paths connected throughout the soil column and across the hillslope and facilitated substantial amounts of vertical and lateral flow through periglacial slope deposits. In the riparian zone of the same headwater catchment, the connectivity between hillslopes and stream was controlled by topography and the dualism between characteristic subsurface structures and the geomorphological heterogeneity of the stream channel. At the small scale (1 m to 10 m) highest gains always occurred at steps along the longitudinal streambed profile, which also controlled discharge patterns at the large scale (100 m) during base flow conditions (number of steps per section). During medium and high flow conditions, however, the impact of topography and parafluvial flow through riparian zone structures prevailed and dominated the large-scale response patterns. In the streambed of a lowland river, low permeability peat layers affected the connectivity between surface water and groundwater, but also between surface water and the hyporheic zone. The crucial factor was not the permeability of the streambed itself, but rather the spatial arrangement of flow-impeding peat layers, causing increased vertical flow through narrow "windows" in contrast to predominantly lateral flow in extended areas of high hydraulic conductivity sediments. These results show that the spatial organization of structures was an important control for hydrological processes at all scales and study areas. In a final step, the observations from different scales and catchment elements were put in relation and compared. The main focus was on the theoretical analysis of the scale hierarchies of structures and processes and the direction of causal dependencies in this context. Based on the resulting hierarchical structure, a conceptual framework was developed which is capable of representing the system's complexity while allowing for adequate simplifications. The resulting concept of the parabolic scale series is based on the insight that flow processes in the terrestrial part of the catchment (soil and hillslopes) converge. This means that small-scale processes assemble and form large-scale processes and responses. Processes in the riparian zone and the streambed, however, are not well represented by the idea of convergence. Here, the large-scale catchment signal arrives and is modified by structures in the riparian zone, stream morphology, and the small-scale interactions between surface water and groundwater. Flow paths diverge and processes can better be represented by proceeding from large scales to smaller ones. The catchment-scale representation of processes and structures is thus the conceptual link between terrestrial hillslope processes and processes in the riparian corridor.}, language = {en} } @phdthesis{Sieg2018, author = {Sieg, Tobias}, title = {Reliability of flood damage estimations across spatial scales}, doi = {10.25932/publishup-42616}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426161}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 115}, year = {2018}, abstract = {Extreme Naturereignisse sind ein integraler Bestandteil der Natur der Erde. Sie werden erst dann zu Gefahren f{\"u}r die Gesellschaft, wenn sie diesen Ereignissen ausgesetzt ist. Dann allerdings k{\"o}nnen Naturgefahren verheerende Folgen f{\"u}r die Gesellschaft haben. Besonders hydro-meteorologische Gefahren wie zum Beispiel Flusshochwasser, Starkregenereignisse, Winterst{\"u}rme, Orkane oder Tornados haben ein hohes Schadenspotential und treten rund um den Globus auf. Einhergehend mit einer immer w{\"a}rmer werdenden Welt, werden auch Extremwetterereignisse, welche potentiell Naturgefahren ausl{\"o}sen k{\"o}nnen, immer wahrscheinlicher. Allerdings tr{\"a}gt nicht nur eine sich ver{\"a}ndernde Umwelt zur Erh{\"o}hung des Risikos von Naturgefahren bei, sondern auch eine sich ver{\"a}ndernde Gesellschaft. Daher ist ein angemessenes Risikomanagement erforderlich um die Gesellschaft auf jeder r{\"a}umlichen Ebene an diese Ver{\"a}nderungen anzupassen. Ein essentieller Bestandteil dieses Managements ist die Absch{\"a}tzung der {\"o}konomischen Auswirkungen der Naturgefahren. Bisher allerdings fehlen verl{\"a}ssliche Methoden um die Auswirkungen von hydro-meteorologischen Gefahren abzusch{\"a}tzen. Ein Hauptbestandteil dieser Arbeit ist daher die Entwicklung und Anwendung einer neuen Methode, welche die Verl{\"a}sslichkeit der Schadenssch{\"a}tzung verbessert. Die Methode wurde beispielhaft zur Sch{\"a}tzung der {\"o}konomischen Auswirkungen eines Flusshochwassers auf einzelne Unternehmen bis hin zu den Auswirkungen auf das gesamte Wirtschaftssystem Deutschlands erfolgreich angewendet. Bestehende Methoden geben meist wenig Information {\"u}ber die Verl{\"a}sslichkeit ihrer Sch{\"a}tzungen. Da diese Informationen Entscheidungen zur Anpassung an das Risiko erleichtern, wird die Verl{\"a}sslichkeit der Schadenssch{\"a}tzungen mit der neuen Methode dargestellt. Die Verl{\"a}sslichkeit bezieht sich dabei nicht nur auf die Schadenssch{\"a}tzung selber, sondern auch auf die Annahmen, die {\"u}ber betroffene Geb{\"a}ude gemacht werden. Nach diesem Prinzip kann auch die Verl{\"a}sslichkeit von Annahmen {\"u}ber die Zukunft dargestellt werden, dies ist ein wesentlicher Aspekt f{\"u}r Prognosen. Die Darstellung der Verl{\"a}sslichkeit und die erfolgreiche Anwendung zeigt das Potential der Methode zur Verwendung von Analysen f{\"u}r gegenw{\"a}rtige und zuk{\"u}nftige hydro-meteorologische Gefahren.}, language = {en} } @misc{WaltherGuanterHeimetal.2018, author = {Walther, Sophia and Guanter, Luis and Heim, Birgit and Jung, Martin and Duveiller, Gregory and Wolanin, Aleksandra and Sachs, Torsten}, title = {Assessing the dynamics of vegetation productivity in circumpolar regions with different satellite indicators of greenness and photosynthesis}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1025}, issn = {1866-8372}, doi = {10.25932/publishup-44620}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446205}, pages = {6221 -- 6256}, year = {2018}, abstract = {High-latitude treeless ecosystems represent spatially highly heterogeneous landscapes with small net carbon fluxes and a short growing season. Reliable observations and process understanding are critical for projections of the carbon balance of the climate-sensitive tundra. Space-borne remote sensing is the only tool to obtain spatially continuous and temporally resolved information on vegetation greenness and activity in remote circumpolar areas. However, confounding effects from persistent clouds, low sun elevation angles, numerous lakes, widespread surface inundation, and the sparseness of the vegetation render it highly challenging. Here, we conduct an extensive analysis of the timing of peak vegetation productivity as shown by satellite observations of complementary indicators of plant greenness and photosynthesis. We choose to focus on productivity during the peak of the growing season, as it importantly affects the total annual carbon uptake. The suite of indicators are as follows: (1) MODIS-based vegetation indices (VIs) as proxies for the fraction of incident photosynthetically active radiation (PAR) that is absorbed (fPAR), (2) VIs combined with estimates of PAR as a proxy of the total absorbed radiation (APAR), (3) sun-induced chlorophyll fluorescence (SIF) serving as a proxy for photosynthesis, (4) vegetation optical depth (VOD), indicative of total water content and (5) empirically upscaled modelled gross primary productivity (GPP). Averaged over the pan-Arctic we find a clear order of the annual peak as APAR ≦ GPP