@article{LauMaierBrauneetal.2021, author = {Lau, Skadi and Maier, Anna and Braune, Steffen and Gossen, Manfred and Lendlein, Andreas}, title = {Effect of endothelial culture medium composition on platelet responses to polymeric biomaterials}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {13}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms22137006}, pages = {13}, year = {2021}, abstract = {Near-physiological in vitro thrombogenicity test systems for the evaluation of blood-contacting endothelialized biomaterials requires co-cultivation with platelets (PLT). However, the addition of PLT has led to unphysiological endothelial cell (EC) detachment in such in vitro systems. A possible cause for this phenomenon may be PLT activation triggered by the applied endothelial cell medium, which typically consists of basal medium (BM) and nine different supplements. To verify this hypothesis, the influence of BM and its supplements was systematically analyzed regarding PLT responses. For this, human platelet rich plasma (PRP) was mixed with BM, BM containing one of nine supplements, or with BM containing all supplements together. PLT adherence analysis was carried out in six-channel slides with plasma-treated cyclic olefin copolymer (COC) and poly(tetrafluoro ethylene) (PTFE, as a positive control) substrates as part of the six-channel slides in the absence of EC and under static conditions. PLT activation and aggregation were analyzed using light transmission aggregometry and flow cytometry (CD62P). Medium supplements had no effect on PLT activation and aggregation. In contrast, supplements differentially affected PLT adherence, however, in a polymer- and donor-dependent manner. Thus, the use of standard endothelial growth medium (BM + all supplements) maintains functionality of PLT under EC compatible conditions without masking the differences of PLT adherence on different polymeric substrates. These findings are important prerequisites for the establishment of a near-physiological in vitro thrombogenicity test system assessing polymer-based cardiovascular implant materials in contact with EC and PLT.}, language = {en} } @article{LauGossenLendlein2021, author = {Lau, Skadi and Gossen, Manfred and Lendlein, Andreas}, title = {Designing cardiovascular implants taking in view the endothelial basement membrane}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {23}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms222313120}, pages = {26}, year = {2021}, abstract = {Insufficient endothelialization of cardiovascular grafts is a major hurdle in vascular surgery and regenerative medicine, bearing a risk for early graft thrombosis. Neither of the numerous strategies pursued to solve these problems were conclusive. Endothelialization is regulated by the endothelial basement membrane (EBM), a highly specialized part of the vascular extracellular matrix. Thus, a detailed understanding of the structure-function interrelations of the EBM components is fundamental for designing biomimetic materials aiming to mimic EBM functions. In this review, a detailed description of the structure and functions of the EBM are provided, including the luminal and abluminal interactions with adjacent cell types, such as vascular smooth muscle cells. Moreover, in vivo as well as in vitro strategies to build or renew EBM are summarized and critically discussed. The spectrum of methods includes vessel decellularization and implant biofunctionalization strategies as well as tissue engineering-based approaches and bioprinting. Finally, the limitations of these methods are highlighted, and future directions are suggested to help improve future design strategies for EBM-inspired materials in the cardiovascular field.}, language = {en} } @article{KruegerGengeSchulzKratzetal.2018, author = {Kr{\"u}ger-Genge, Anne and Schulz, Christian and Kratz, Karl and Lendlein, Andreas and Jung, Friedrich}, title = {Comparison of two substrate materials used as negative control in endothelialization studies}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {69}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {3}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-189904}, pages = {437 -- 445}, year = {2018}, abstract = {The endothelialization of synthetic surfaces applied as cardiovascular implant materials is an important issue to ensure the anti-thrombotic quality of a biomaterial. However, the rapid and constant development of a functionallycon-fluent endothelial cell monolayer is challenging. In order to investigate the compatibility of potential implant materials with endothelial cells several in vitro studies are performed. Here, glass and tissue culture plates (TCP) are often used as reference materials for in vitro pre-testing. However, a direct comparison of both substrates is lacking. Therefore, a comparison of study results is difficult, since results are often related to various reference materials. In this study, the endothelialization of glass and TCP was investigated in terms of adherence, morphology, integrity, viability and function using human umbilical vein endothelial cells (HUVEC). On both substrates an almost functionally confluent HUVEC monolayer was developed after nine days of cell seeding with clearly visible cell rims, decreased stress fiber formation and a pronounced marginal filament band. The viability of HUVEC was comparable for both substrates nine days after cell seeding with only a few dead cells. According to that, the cell membrane integrity as well as the metabolic activity showed no differences between TCP and glass. However, a significant difference was observed for the secretion of IL-6 and IL-8. The concentration of both cytokines, which are associated with migratory activity, was increased in the supernatant of HUVEC seeded on TCP. This result matches well with the slightly increased number of adherent HUVEC on TCP. In conclusion, these findings indicate that both reference materials are almost comparable and can be used equivalently as control materials in in vitro endothelialization studies.}, language = {en} }