@article{ArhammarPietzschBocketal.2011, author = {Arhammar, C. and Pietzsch, Annette and Bock, Nicolas and Holmstroem, Erik and Araujo, C. Moyses and Grasjo, Johan and Zhao, Shuxi and Green, Sara and Peery, T. and Hennies, Franz and Amerioun, Shahrad and F{\"o}hlisch, Alexander and Schlappa, Justine and Schmitt, Thorsten and Strocov, Vladimir N. and Niklasson, Gunnar A. and Wallace, Duane C. and Rubensson, Jan-Erik and Johansson, Borje and Ahuja, Rajeev C.}, title = {Unveiling the complex electronic structure of amorphous metal oxides}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {108}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {16}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1019698108}, pages = {6355 -- 6360}, year = {2011}, abstract = {Amorphous materials represent a large and important emerging area of material's science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al2O3-Si3N4-SiO2-Silicon) flash memories. These technologies are required for the high packing density of today's integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5-10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.}, language = {en} } @article{PietzschSunHenniesetal.2011, author = {Pietzsch, Annette and Sun, Y. -P. and Hennies, Franz and Rinkevicius, Z. and Karlsson, Hans O. and Schmitt, Thorsten and Strocov, Vladimir N. and Andersson, Joakim and Kennedy, B. and Schlappa, J. and F{\"o}hlisch, Alexander and Rubensson, Jan-Erik and Gel'mukhanov, F.}, title = {Spatial quantum beats in vibrational resonant inelastic soft X-ray scattering at dissociating states in oxygen}, series = {Physical review letters}, volume = {106}, journal = {Physical review letters}, number = {15}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.106.153004}, pages = {4}, year = {2011}, abstract = {Resonant inelastic soft x-ray scattering (RIXS) spectra excited at the 1 sigma(g) -> 3 sigma(u) resonance in gas-phase O-2 show excitations due to the nuclear degrees of freedom with up to 35 well-resolved discrete vibronic states and a continuum due to the kinetic energy distribution of the separated atoms. The RIXS profile demonstrates spatial quantum beats caused by two interfering wave packets with different momenta as the atoms separate. Thomson scattering strongly affects both the spectral profile and the scattering anisotropy.}, language = {en} } @article{PietzschHenniesMiedemaetal.2015, author = {Pietzsch, Annette and Hennies, Franz and Miedema, Piter S. and Kennedy, Brian and Schlappa, Justine and Schmitt, Thorsten and Strocov, Vladimir N. and F{\"o}hlisch, Alexander}, title = {Snapshots of the Fluctuating Hydrogen Bond Network in Liquid Water on the Sub-Femtosecond Timescale with Vibrational Resonant Inelastic x-ray Scattering}, series = {Physical review letters}, volume = {114}, journal = {Physical review letters}, number = {8}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.114.088302}, pages = {5}, year = {2015}, abstract = {Liquid water molecules interact strongly with each other, forming a fluctuating hydrogen bond network and thereby giving rise to the anomalous phase diagram of liquid water. Consequently, symmetric and asymmetric water molecules have been found in the picosecond time average with IR and optical Raman spectroscopy. With subnatural linewidth resonant inelastic x-ray scattering (RIXS) at vibrational resolution, we take sub-femtosecond snapshots of the electronic and structural properties of water molecules in the hydrogen bond network. We derive a strong dominance of nonsymmetric molecules in liquid water in contrast to the gas phase on the sub-femtosecond timescale of RIXS and determine the fraction of highly asymmetrically distorted molecules.}, language = {en} } @article{RubenssonSoderstromBinggelietal.2015, author = {Rubensson, Jan-Erik and Soderstrom, Johan and Binggeli, Christian and Grasjo, Joakim and Andersson, Johan and Sathe, Conny and Hennies, Franz and Bisogni, Valentina and Huang, Yaobo and Olalde, Paul and Schmitt, Thorsten and Strocov, Vladimir N. and F{\"o}hlisch, Alexander and Kennedy, Brian and Pietzsch, Annette}, title = {Rydberg-Resolved Resonant Inelastic Soft X-Ray Scattering: Dynamics at Core Ionization Thresholds}, series = {Physical review letters}, volume = {114}, journal = {Physical review letters}, number = {13}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.114.133001}, pages = {5}, year = {2015}, abstract = {Resonant inelastic x-ray scattering spectra excited in the immediate vicinity of the core-level ionization thresholds of N-2 have been recorded. Final states of well-resolved symmetry-selected Rydberg series converging to valence-level ionization thresholds with vibrational excitations are observed. The results are well described by a quasi-two-step model which assumes that the excited electron is unaffected by the radiative decay. This threshold dynamics simplifies the interpretation of resonant inelastic x-ray scattering spectra considerably and facilitates characterization of low-energy excited final states in molecular systems.}, language = {en} } @article{HenniesPietzschBerglundetal.2010, author = {Hennies, Franz and Pietzsch, Annette and Berglund, Martin and F{\"o}hlisch, Alexander and Schmitt, Thorsten and Strocov, Vladimir and Karlsson, Hans O. and Andersson, Joakim and Rubensson, Jan-Erik}, title = {Resonant inelastic scattering spectra of free molecules with vibrational resolution}, issn = {0031-9007}, doi = {10.1103/Physrevlett.104.193002}, year = {2010}, abstract = {Inelastic x-ray scattering spectra excited at the 1s(-1) pi* resonance of gas phase O-2 have been recorded with an overall energy resolution that allows for well-resolved vibrational progressions. The nuclear wave packet dynamics in the intermediate state is reflected in vibrational excitations of the electronic ground state, and by fine-tuning the excitation energy the dissociation dynamics in the predissociative B' (3) Pi(g) final state is controlled.}, language = {en} } @article{WernetKunnusJosefssonetal.2015, author = {Wernet, Philippe and Kunnus, Kristjan and Josefsson, Ida and Rajkovic, Ivan and Quevedo, Wilson and Beye, Martin and Schreck, Simon and Gruebel, S. and Scholz, Mirko and Nordlund, Dennis and Zhang, Wenkai and Hartsock, Robert W. and Schlotter, William F. and Turner, Joshua J. and Kennedy, Brian and Hennies, Franz and de Groot, Frank M. F. and Gaffney, Kelly J. and Techert, Simone and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)(5) in solution}, series = {Nature : the international weekly journal of science}, volume = {520}, journal = {Nature : the international weekly journal of science}, number = {7545}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature14296}, pages = {78 -- 81}, year = {2015}, abstract = {Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion(1,2). Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site(3-11) that need to be controlled to optimize complexes for photocatalytic hydrogen production(8) and selective carbon-hydrogen bond activation(9-11). An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)(5) in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)(4) species, a homogeneous catalyst(12,13) with an electron deficiency at the Fe centre(14,15), in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)(5) (refs 4, 16-20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.}, language = {en} } @article{SunHenniesPietzschetal.2011, author = {Sun, Y. -P. and Hennies, Franz and Pietzsch, Annette and Kennedy, B. and Schmitt, Thorsten and Strocov, Vladimir N. and Andersson, Joakim and Berglund, Martin and Rubensson, Jan-Erik and Aidas, K. and Gel'mukhanov, F. and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Intramolecular soft modes and intermolecular interactions in liquid acetone}, series = {Physical review : B, Condensed matter and materials physics}, volume = {84}, journal = {Physical review : B, Condensed matter and materials physics}, number = {13}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.84.132202}, pages = {4}, year = {2011}, abstract = {Resonant inelastic x-ray scattering spectra excited at the O1s(-1)pi* resonance of liquid acetone are presented. Scattering to the electronic ground state shows a resolved vibrational progression where the dominant contribution is due to the C-O stretching mode, thus demonstrating a unique sensitivity of the method to the local potential energy surface in complex molecular systems. For scattering to electronically excited states, soft vibrational modes and, to a smaller extent, intermolecular interactions give a broadening, which blurs the vibrational fine structure. It is predicted that environmental broadening is dominant in aqueous acetone.}, language = {en} } @article{SunPietzschHenniesetal.2011, author = {Sun, Y-P and Pietzsch, Annette and Hennies, Franz and Rinkevicius, Z. and Karlsson, Hans O. and Schmitt, Thorsten and Strocov, Vladimir N. and Andersson, Joakim and Kennedy, B. and Schlappa, J. and F{\"o}hlisch, Alexander and Gel'mukhanov, F. and Rubensson, Jan-Erik}, title = {Internal symmetry and selection rules in resonant inelastic soft x-ray scattering}, series = {Journal of physics : B, Atomic, molecular and optical physics}, volume = {44}, journal = {Journal of physics : B, Atomic, molecular and optical physics}, number = {16}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0953-4075}, doi = {10.1088/0953-4075/44/16/161002}, pages = {5}, year = {2011}, abstract = {Resonant inelastic soft x-ray scattering spectra excited at the dissociative 1 sigma(g) -> 3 sigma(u) resonance in gas-phase O(2) are presented and discussed in terms of state-of-the-art molecular theory. A new selection rule due to internal spin coupling is established, facilitating a deep analysis of the valence excited final states. Furthermore, it is found that a commonly accepted symmetry selection rule due to orbital parity breaks down, as the core hole and excited electron swap parity, thereby opening the symmetry forbidden 3 sigma(g) decay channel.}, language = {en} } @article{SchreckPietzschKennedyetal.2016, author = {Schreck, Simon and Pietzsch, Annette and Kennedy, Brian and Sathe, Conny and Miedema, Piter S. and Techert, Simone and Strocov, Vladimir N. and Schmitt, Thorsten and Hennies, Franz and Rubensson, Jan-Erik and F{\"o}hlisch, Alexander}, title = {Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep20054}, pages = {7}, year = {2016}, abstract = {Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.}, language = {en} } @article{KunnusJosefssonRajkovicetal.2016, author = {Kunnus, Kristjan and Josefsson, Ida and Rajkovic, Ivan and Schreck, Simon and Quevedo, Wilson and Beye, Martin and Gr{\"u}bel, Sebastian and Scholz, Mirko and Nordlund, Dennis and Zhang, Wenkai and Hartsock, Robert W. and Gaffney, Kelly J. and Schlotter, William F. and Turner, Joshua J. and Kennedy, Brian and Hennies, Franz and Techert, Simone and Wernet, Philippe and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics}, series = {NEW JOURNAL OF PHYSICS}, volume = {18}, journal = {NEW JOURNAL OF PHYSICS}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/18/10/103011}, pages = {9}, year = {2016}, abstract = {Ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)(5) in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given-which will be covered experimentally by upcoming transform-limited x-ray sources.}, language = {en} } @article{KunnusRajkovicSchrecketal.2012, author = {Kunnus, Kristjan and Rajkovic, Ivan and Schreck, Simon and Quevedo, Wilson and Eckert, Sebastian and Beye, Martin and Suljoti, Edlira and Weniger, Christian and Kalus, Christian and Gruebel, Sebastian and Scholz, Mirko and Nordlund, Dennis and Zhang, Wenkai and Hartsock, Robert W. and Gaffney, Kelly J. and Schlotter, William F. and Turner, Joshua J. and Kennedy, Brian and Hennies, Franz and Techert, Simone and Wernet, Philippe and F{\"o}hlisch, Alexander}, title = {A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {83}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0034-6748}, doi = {10.1063/1.4772685}, pages = {8}, year = {2012}, abstract = {We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.}, language = {en} }