@phdthesis{Schifferle2024, author = {Schifferle, Lukas}, title = {Optical properties of (Mg,Fe)O at high pressure}, doi = {10.25932/publishup-62216}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622166}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 90}, year = {2024}, abstract = {Large parts of the Earth's interior are inaccessible to direct observation, yet global geodynamic processes are governed by the physical material properties under extreme pressure and temperature conditions. It is therefore essential to investigate the deep Earth's physical properties through in-situ laboratory experiments. With this goal in mind, the optical properties of mantle minerals at high pressure offer a unique way to determine a variety of physical properties, in a straight-forward, reproducible, and time-effective manner, thus providing valuable insights into the physical processes of the deep Earth. This thesis focusses on the system Mg-Fe-O, specifically on the optical properties of periclase (MgO) and its iron-bearing variant ferropericlase ((Mg,Fe)O), forming a major planetary building block. The primary objective is to establish links between physical material properties and optical properties. In particular the spin transition in ferropericlase, the second-most abundant phase of the lower mantle, is known to change the physical material properties. Although the spin transition region likely extends down to the core-mantle boundary, the ef-fects of the mixed-spin state, where both high- and low-spin state are present, remains poorly constrained. In the studies presented herein, we show how optical properties are linked to physical properties such as electrical conductivity, radiative thermal conductivity and viscosity. We also show how the optical properties reveal changes in the chemical bonding. Furthermore, we unveil how the chemical bonding, the optical and other physical properties are affected by the iron spin transition. We find opposing trends in the pres-sure dependence of the refractive index of MgO and (Mg,Fe)O. From 1 atm to ~140 GPa, the refractive index of MgO decreases by ~2.4\% from 1.737 to 1.696 (±0.017). In contrast, the refractive index of (Mg0.87Fe0.13)O (Fp13) and (Mg0.76Fe0.24)O (Fp24) ferropericlase increases with pressure, likely because Fe Fe interactions between adjacent iron sites hinder a strong decrease of polarizability, as it is observed with increasing density in the case of pure MgO. An analysis of the index dispersion in MgO (decreasing by ~23\% from 1 atm to ~103 GPa) reflects a widening of the band gap from ~7.4 eV at 1 atm to ~8.5 (±0.6) eV at ~103 GPa. The index dispersion (between 550 and 870 nm) of Fp13 reveals a decrease by a factor of ~3 over the spin transition range (~44-100 GPa). We show that the electrical band gap of ferropericlase significantly widens up to ~4.7 eV in the mixed spin region, equivalent to an increase by a factor of ~1.7. We propose that this is due to a lower electron mobility between adjacent Fe2+ sites of opposite spin, explaining the previously observed low electrical conductivity in the mixed spin region. From the study of absorbance spectra in Fp13, we show an increasing covalency of the Fe-O bond with pressure for high-spin ferropericlase, whereas in the low-spin state a trend to a more ionic nature of the Fe-O bond is observed, indicating a bond weakening effect of the spin transition. We found that the spin transition is ultimately caused by both an increase of the ligand field-splitting energy and a decreasing spin-pairing energy of high-spin Fe2+.}, language = {en} } @phdthesis{Ketzer2024, author = {Ketzer, Laura}, title = {The impact of stellar activity evolution on atmospheric mass loss of young exoplanets}, doi = {10.25932/publishup-62681}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-626819}, school = {Universit{\"a}t Potsdam}, pages = {x, 208}, year = {2024}, abstract = {The increasing number of known exoplanets raises questions about their demographics and the mechanisms that shape planets into how we observe them today. Young planets in close-in orbits are exposed to harsh environments due to the host star being magnetically highly active, which results in high X-ray and extreme UV fluxes impinging on the planet. Prolonged exposure to this intense photoionizing radiation can cause planetary atmospheres to heat up, expand and escape into space via a hydrodynamic escape process known as photoevaporation. For super-Earth and sub-Neptune-type planets, this can even lead to the complete erosion of their primordial gaseous atmospheres. A factor of interest for this particular mass-loss process is the activity evolution of the host star. Stellar rotation, which drives the dynamo and with it the magnetic activity of a star, changes significantly over the stellar lifetime. This strongly affects the amount of high-energy radiation received by a planet as stars age. At a young age, planets still host warm and extended envelopes, making them particularly susceptible to atmospheric evaporation. Especially in the first gigayear, when X-ray and UV levels can be 100 - 10,000 times higher than for the present-day sun, the characteristics of the host star and the detailed evolution of its high-energy emission are of importance. In this thesis, I study the impact of stellar activity evolution on the high-energy-induced atmospheric mass loss of young exoplanets. The PLATYPOS code was developed as part of this thesis to calculate photoevaporative mass-loss rates over time. The code, which couples parameterized planetary mass-radius relations with an analytical hydrodynamic escape model, was used, together with Chandra and eROSITA X-ray observations, to investigate the future mass loss of the two young multiplanet systems V1298 Tau and K2-198. Further, in a numerical ensemble study, the effect of a realistic spread of activity tracks on the small-planet radius gap was investigated for the first time. The works in this thesis show that for individual systems, in particular if planetary masses are unconstrained, the difference between a young host star following a low-activity track vs. a high-activity one can have major implications: the exact shape of the activity evolution can determine whether a planet can hold on to some of its atmosphere, or completely loses its envelope, leaving only the bare rocky core behind. For an ensemble of simulated planets, an observationally-motivated distribution of activity tracks does not substantially change the final radius distribution at ages of several gigayears. My simulations indicate that the overall shape and slope of the resulting small-planet radius gap is not significantly affected by the spread in stellar activity tracks. However, it can account for a certain scattering or fuzziness observed in and around the radius gap of the observed exoplanet population.}, language = {en} } @phdthesis{GostkowskaLekner2024, author = {Gostkowska-Lekner, Natalia Katarzyna}, title = {Organic-inorganic hybrids based on P3HT and mesoporous silicon for thermoelectric applications}, doi = {10.25932/publishup-62047}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-620475}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2024}, abstract = {This thesis presents a comprehensive study on synthesis, structure and thermoelectric transport properties of organic-inorganic hybrids based on P3HT and porous silicon. The effect of embedding polymer in silicon pores on the electrical and thermal transport is studied. Morphological studies confirm successful polymer infiltration and diffusion doping with roughly 50\% of the pore space occupied by conjugated polymer. Synchrotron diffraction experiments reveal no specific ordering of the polymer inside the pores. P3HT-pSi hybrids show improved electrical transport by five orders of magnitude compared to porous silicon and power factor values comparable or exceeding other P3HT-inorganic hybrids. The analysis suggests different transport mechanisms in both materials. In pSi, the transport mechanism relates to a Meyer-Neldel compansation rule. The analysis of hybrids' data using the power law in Kang-Snyder model suggests that a doped polymer mainly provides charge carriers to the pSi matrix, similar to the behavior of a doped semiconductor. Heavily suppressed thermal transport in porous silicon is treated with a modified Landauer/Lundstrom model and effective medium theories, which reveal that pSi agrees well with the Kirkpatrick model with a 68\% percolation threshold. Thermal conductivities of hybrids show an increase compared to the empty pSi but the overall thermoelectric figure of merit ZT of P3HT-pSi hybrid exceeds both pSi and P3HT as well as bulk Si.}, language = {en} } @techreport{BruttelEisenkopfNithammer2024, type = {Working Paper}, author = {Bruttel, Lisa Verena and Eisenkopf, Gerald and Nithammer, Juri}, title = {Pre-election communication in public good games with endogenous leaders}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {73}, issn = {2628-653X}, doi = {10.25932/publishup-62395}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-623952}, pages = {28}, year = {2024}, abstract = {Leadership plays an important role for the efficient and fair solution of social dilemmas but the effectiveness of a leader can vary substantially. Two main factors of leadership impact are the ability to induce high contributions by all group members and the (expected) fair use of power. Participants in our experiment decide about contributions to a public good. After all contributions are made, the leader can choose how much of the joint earnings to assign to herself; the remainder is distributed equally among the followers. Using machine learning techniques, we study whether the content of initial open statements by the group members predicts their behavior as a leader and whether groups are able to identify such clues and endogenously appoint a "good" leader to solve the dilemma. We find that leaders who promise fairness are more likely to behave fairly, and that followers appoint as leaders those who write more explicitly about fairness and efficiency. However, in their contribution decision, followers focus on the leader's first-move contribution and place less importance on the content of the leader's statements.}, language = {en} } @techreport{EstrinKhavulKritikosetal.2024, type = {Working Paper}, author = {Estrin, Saul and Khavul, Susanna and Kritikos, Alexander and L{\"o}her, Jonas}, title = {Access to digital finance}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {72}, issn = {2628-653X}, doi = {10.25932/publishup-62326}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-623261}, pages = {27}, year = {2024}, abstract = {Financing entrepreneurship spurs innovation and economic growth. Digital financial platforms that crowdfund equity for entrepreneurs have emerged globally, yet they remain poorly understood. We model equity crowdfunding in terms of the relationship between the number of investors and the amount of money raised per pitch. We examine heterogeneity in the average amount raised per pitch that is associated with differences across three countries and seven platforms. Using a novel dataset of successful fundraising on the most prominent platforms in the UK, Germany, and the USA, we find the underlying relationship between the number of investors and the amount of money raised for entrepreneurs is loglinear, with a coefficient less than one and concave to the origin. We identify significant variation in the average amount invested in each pitch across countries and platforms. Our findings have implications for market actors as well as regulators who set competitive frameworks.}, language = {en} } @phdthesis{Littmann2024, author = {Littmann, Daniela-Christin}, title = {Large eddy simulations of the Arctic boundary layer around the MOSAiC drift track}, doi = {10.25932/publishup-62437}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-624374}, school = {Universit{\"a}t Potsdam}, pages = {xii, 110}, year = {2024}, abstract = {The icosahedral non-hydrostatic large eddy model (ICON-LEM) was applied around the drift track of the Multidisciplinary Observatory Study of the Arctic (MOSAiC) in 2019 and 2020. The model was set up with horizontal grid-scales between 100m and 800m on areas with radii of 17.5km and 140 km. At its lateral boundaries, the model was driven by analysis data from the German Weather Service (DWD), downscaled by ICON in limited area mode (ICON-LAM) with horizontal grid-scale of 3 km. The aim of this thesis was the investigation of the atmospheric boundary layer near the surface in the central Arctic during polar winter with a high-resolution mesoscale model. The default settings in ICON-LEM prevent the model from representing the exchange processes in the Arctic boundary layer in accordance to the MOSAiC observations. The implemented sea-ice scheme in ICON does not include a snow layer on sea-ice, which causes a too slow response of the sea-ice surface temperature to atmospheric changes. To allow the sea-ice surface to respond faster to changes in the atmosphere, the implemented sea-ice parameterization in ICON was extended with an adapted heat capacity term. The adapted sea-ice parameterization resulted in better agreement with the MOSAiC observations. However, the sea-ice surface temperature in the model is generally lower than observed due to biases in the downwelling long-wave radiation and the lack of complex surface structures, like leads. The large eddy resolving turbulence closure yielded a better representation of the lower boundary layer under strongly stable stratification than the non-eddy-resolving turbulence closure. Furthermore, the integration of leads into the sea-ice surface reduced the overestimation of the sensible heat flux for different weather conditions. The results of this work help to better understand boundary layer processes in the central Arctic during the polar night. High-resolving mesoscale simulations are able to represent temporally and spatially small interactions and help to further develop parameterizations also for the application in regional and global models.}, language = {en} } @phdthesis{WindirschWoiwode2024, author = {Windirsch-Woiwode, Torben}, title = {Permafrost carbon stabilisation by recreating a herbivore-driven ecosystem}, doi = {10.25932/publishup-62424}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-624240}, school = {Universit{\"a}t Potsdam}, pages = {X, 104, A-57}, year = {2024}, abstract = {With Arctic ground as a huge and temperature-sensitive carbon reservoir, maintaining low ground temperatures and frozen conditions to prevent further carbon emissions that contrib-ute to global climate warming is a key element in humankind's fight to maintain habitable con-ditions on earth. Former studies showed that during the late Pleistocene, Arctic ground condi-tions were generally colder and more stable as the result of an ecosystem dominated by large herbivorous mammals and vast extents of graminoid vegetation - the mammoth steppe. Characterised by high plant productivity (grassland) and low ground insulation due to animal-caused compression and removal of snow, this ecosystem enabled deep permafrost aggrad-ation. Now, with tundra and shrub vegetation common in the terrestrial Arctic, these effects are not in place anymore. However, it appears to be possible to recreate this ecosystem local-ly by artificially increasing animal numbers, and hence keep Arctic ground cold to reduce or-ganic matter decomposition and carbon release into the atmosphere. By measuring thaw depth, total organic carbon and total nitrogen content, stable carbon iso-tope ratio, radiocarbon age, n-alkane and alcohol characteristics and assessing dominant vegetation types along grazing intensity transects in two contrasting Arctic areas, it was found that recreating conditions locally, similar to the mammoth steppe, seems to be possible. For permafrost-affected soil, it was shown that intensive grazing in direct comparison to non-grazed areas reduces active layer depth and leads to higher TOC contents in the active layer soil. For soil only frozen on top in winter, an increase of TOC with grazing intensity could not be found, most likely because of confounding factors such as vertical water and carbon movement, which is not possible with an impermeable layer in permafrost. In both areas, high animal activity led to a vegetation transformation towards species-poor graminoid-dominated landscapes with less shrubs. Lipid biomarker analysis revealed that, even though the available organic material is different between the study areas, in both permafrost-affected and sea-sonally frozen soils the organic material in sites affected by high animal activity was less de-composed than under less intensive grazing pressure. In conclusion, high animal activity af-fects decomposition processes in Arctic soils and the ground thermal regime, visible from reduced active layer depth in permafrost areas. Therefore, grazing management might be utilised to locally stabilise permafrost and reduce Arctic carbon emissions in the future, but is likely not scalable to the entire permafrost region.}, language = {en} } @phdthesis{Rinne2024, author = {Rinne, Theresa Charlotte}, title = {The effects of nutrients on bone stem cell function and regeneration}, school = {Universit{\"a}t Potsdam}, pages = {V, 134}, year = {2024}, abstract = {Aging is associated with bone loss, which can lead to osteoporosis and high fracture risk. This coincides with the enhanced formation of bone marrow adipose tissue (BMAT), suggesting a negative effect of bone marrow adipocytes on skeletal health. Increased BMAT formation is also observed in pathologies such as obesity, type 2 diabetes and osteoporosis. However, a subset of bone marrow adipocytes forming the constitutive BMAT (cBMAT), arise early in life in the distal skeleton, contain high levels of unsaturated fatty acids and are thought to provide a physiological function. Regulated BMAT (rBMAT) forms during aging and obesity in proximal regions of the bone and contain a large proportion of saturated fatty acids. Paradoxically, BMAT accumulation is also enhanced during caloric restriction (CR), a life-span extending dietary intervention. This indicates, that different types of BMAT can form in response to opposing nutritional stimuli with potentially different functions. To this end, two types of nutritional interventions, CR and high fat diet (HFD), that are both described to induce BMAT accumulation were carried out. CR markedly increased BMAT formation in the proximal tibia and led to a higher proportion of unsaturated fatty acids, making it similar to the physiological cBMAT. Additionally, proximal and diaphyseal tibia regions displayed higher adiponectin expression. In aged mice, CR was associated with an improved trabecular bone structure. Taken together, these findings demonstrate, that the type of BMAT that forms during CR might provide beneficial effects for local bone stem/progenitor cells and metabolic health. The HFD intervention performed in this thesis showed no effect on BMAT accumulation and bone microstructure. RNA Seq analysis revealed alterations in the composition of the collagen-containing extracellular matrix (ECM). In order to investigate the effects of glucose homeostasis on osteogenesis, differentiation capacity of immortalized multipotent mesenchymal stromal cells (MSCs) and osteochondrogenic progenitor cells (OPCs) was analyzed. Insulin improved differentiation in both cell types, however, combination of with a high glucose concentration led to an impaired mineralization of the ECM. In the MSCs, this was accompanied by the formation of adipocytes, indicating negative effects of the adipocytes formed during hyperglycemic conditions on mineralization processes. However, the altered mineralization pattern and structure of the ECM was also observed in OPCs, which did not form any adipocytes, suggesting further negative effects of a hyperglycemic environment on osteogenic differentiation. In summary, the work provided in this thesis demonstrated that differentiation commitment of bone-resident stem cells can be altered through nutrient availability, specifically glucose. Surprisingly, both high nutrient supply, e.g. the hyperglycemic cell culture conditions, and low nutrient supply, e.g. CR, can induce adipogenic differentiation. However, while CR-induced adipocyte formation was associated with improved trabecular bone structure, adipocyte formation in a hyperglycemic cell-culture environment hampered mineralization. This thesis provides further evidence for the existence of different types of BMAT with specific functions.}, language = {en} } @phdthesis{Kiss2024, author = {Kiss, Andrea}, title = {Moss-associated bacterial and archaeal communities of northern peatlands: key taxa, environmental drivers and potential functions}, doi = {10.25932/publishup-63064}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-630641}, school = {Universit{\"a}t Potsdam}, pages = {XX, 139, liv}, year = {2024}, abstract = {Moss-microbe associations are often characterised by syntrophic interactions between the microorganisms and their hosts, but the structure of the microbial consortia and their role in peatland development remain unknown. In order to study microbial communities of dominant peatland mosses, Sphagnum and brown mosses, and the respective environmental drivers, four study sites representing different successional stages of natural northern peatlands were chosen on a large geographical scale: two brown moss-dominated, circumneutral peatlands from the Arctic and two Sphagnum-dominated, acidic peat bogs from subarctic and temperate zones. The family Acetobacteraceae represented the dominant bacterial taxon of Sphagnum mosses from various geographical origins and displayed an integral part of the moss core community. This core community was shared among all investigated bryophytes and consisted of few but highly abundant prokaryotes, of which many appear as endophytes of Sphagnum mosses. Moreover, brown mosses and Sphagnum mosses represent habitats for archaea which were not studied in association with peatland mosses so far. Euryarchaeota that are capable of methane production (methanogens) displayed the majority of the moss-associated archaeal communities. Moss-associated methanogenesis was detected for the first time, but it was mostly negligible under laboratory conditions. Contrarily, substantial moss-associated methane oxidation was measured on both, brown mosses and Sphagnum mosses, supporting that methanotrophic bacteria as part of the moss microbiome may contribute to the reduction of methane emissions from pristine and rewetted peatlands of the northern hemisphere. Among the investigated abiotic and biotic environmental parameters, the peatland type and the host moss taxon were identified to have a major impact on the structure of moss-associated bacterial communities, contrarily to archaeal communities whose structures were similar among the investigated bryophytes. For the first time it was shown that different bog development stages harbour distinct bacterial communities, while at the same time a small core community is shared among all investigated bryophytes independent of geography and peatland type. The present thesis displays the first large-scale, systematic assessment of bacterial and archaeal communities associated both with brown mosses and Sphagnum mosses. It suggests that some host-specific moss taxa have the potential to play a key role in host moss establishment and peatland development.}, language = {en} } @phdthesis{Shaw2024, author = {Shaw, Vasundhara}, title = {Cosmic-ray transport and signatures in their local environment}, doi = {10.25932/publishup-62019}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-620198}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2024}, abstract = {The origin and structure of magnetic fields in the Galaxy are largely unknown. What is known is that they are essential for several astrophysical processes, in particular the propagation of cosmic rays. Our ability to describe the propagation of cosmic rays through the Galaxy is severely limited by the lack of observational data needed to probe the structure of the Galactic magnetic field on many different length scales. This is particularly true for modelling the propagation of cosmic rays into the Galactic halo, where our knowledge of the magnetic field is particularly poor. In the last decade, observations of the Galactic halo in different frequency regimes have revealed the existence of out-of-plane bubble emission in the Galactic halo. In gamma rays these bubbles have been termed Fermi bubbles with a radial extent of ≈ 3 kpc and an azimuthal height of ≈ 6 kpc. The radio counterparts of the Fermi bubbles were seen by both the S-PASS telescopes and the Planck satellite, and showed a clear spatial overlap. The X-ray counterparts of the Fermi bubbles were named eROSITA bubbles after the eROSITA satellite, with a radial width of ≈ 7 kpc and an azimuthal height of ≈ 14 kpc. Taken together, these observations suggest the presence of large extended Galactic Halo Bubbles (GHB) and have stimulated interest in exploring the less explored Galactic halo. In this thesis, a new toy model (GHB model) for the magnetic field and non-thermal electron distribution in the Galactic halo has been proposed. The new toy model has been used to produce polarised synchrotron emission sky maps. Chi-square analysis was used to compare the synthetic skymaps with the Planck 30 GHz polarised skymaps. The obtained constraints on the strength and azimuthal height were found to be in agreement with the S-PASS radio observations. The upper, lower and best-fit values obtained from the above chi-squared analysis were used to generate three separate toy models. These three models were used to propagate ultra-high energy cosmic rays. This study was carried out for two potential sources, Centaurus A and NGC 253, to produce magnification maps and arrival direction skymaps. The simulated arrival direction skymaps were found to be consistent with the hotspots of Centaurus A and NGC 253 as seen in the observed arrival direction skymaps provided by the Pierre Auger Observatory (PAO). The turbulent magnetic field component of the GHB model was also used to investigate the extragalactic dipole suppression seen by PAO. UHECRs with an extragalactic dipole were forward-tracked through the turbulent GHB model at different field strengths. The suppression in the dipole due to the varying diffusion coefficient from the simulations was noted. The results could also be compared with an analytical analogy of electrostatics. The simulations of the extragalactic dipole suppression were in agreement with similar studies carried out for galactic cosmic rays.}, language = {en} } @article{OgunkolaGuiraudieCaprazFeronetal.2023, author = {Ogunkola, Moses Olalekan and Guiraudie-Capraz, Gaelle and F{\´e}ron, Fran{\c{c}}ois and Leimk{\"u}hler, Silke}, title = {The Human Mercaptopyruvate Sulfurtransferase TUM1 Is Involved in Moco Biosynthesis, Cytosolic tRNA Thiolation and Cellular Bioenergetics in Human Embryonic Kidney Cells}, series = {Biomolecules}, volume = {13}, journal = {Biomolecules}, edition = {1}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2218-273X}, doi = {10.3390/biom13010144}, pages = {1 -- 23}, year = {2023}, abstract = {Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics.}, language = {en} } @article{MarggrafLindeckeVoigtetal.2023, author = {Marggraf, Lara Christin and Lindecke, Oliver and Voigt, Christian C. and Pētersons, Gunārs and Voigt-Heucke, Silke Luise}, title = {Nathusius' bats, Pipistrellus nathusii, bypass mating opportunities of their own species, but respond to foraging heterospecifics on migratory transit flights}, series = {Frontiers in Ecology and Evolution}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {2296-701X}, doi = {10.3389/fevo.2022.908560}, pages = {1 -- 10}, year = {2023}, abstract = {In late summer, migratory bats of the temperate zone face the challenge of accomplishing two energy-demanding tasks almost at the same time: migration and mating. Both require information and involve search efforts, such as localizing prey or finding potential mates. In non-migrating bat species, playback studies showed that listening to vocalizations of other bats, both con-and heterospecifics, may help a recipient bat to find foraging patches and mating sites. However, we are still unaware of the degree to which migrating bats depend on con-or heterospecific vocalizations for identifying potential feeding or mating opportunities during nightly transit flights. Here, we investigated the vocal responses of Nathusius' pipistrelle bats, Pipistrellus nathusii, to simulated feeding and courtship aggregations at a coastal migration corridor. We presented migrating bats either feeding buzzes or courtship calls of their own or a heterospecific migratory species, the common noctule, Nyctalus noctula. We expected that during migratory transit flights, simulated feeding opportunities would be particularly attractive to bats, as well as simulated mating opportunities which may indicate suitable roosts for a stopover. However, we found that when compared to the natural silence of both pre-and post-playback phases, bats called indifferently during the playback of conspecific feeding sounds, whereas P. nathusii echolocation call activity increased during simulated feeding of N. noctula. In contrast, the call activity of P. nathusii decreased during the playback of conspecific courtship calls, while no response could be detected when heterospecific call types were broadcasted. Our results suggest that while on migratory transits, P. nathusii circumnavigate conspecific mating aggregations, possibly to save time or to reduce the risks associated with social interactions where aggression due to territoriality might be expected. This avoidance behavior could be a result of optimization strategies by P. nathusii when performing long-distance migratory flights, and it could also explain the lack of a response to simulated conspecific feeding. However, the observed increase of activity in response to simulated feeding of N. noctula, suggests that P. nathusii individuals may be eavesdropping on other aerial hawking insectivorous species during migration, especially if these occupy a slightly different foraging niche.}, language = {en} } @article{QuarmbyMoennigMugeleetal.2023, author = {Quarmby, Andrew and M{\"o}nnig, Jamal and Mugele, Hendrik and Henschke, Jakob and Kim, MyoungHwee and Cassel, Michael and Engel, Tilman}, title = {Biomechanics and lower limb function are altered in athletes and runners with achilles tendinopathy compared with healthy controls: A systematic review}, series = {Frontiers in Sports and Active Living}, journal = {Frontiers in Sports and Active Living}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {2624-9367}, doi = {10.3389/fspor.2022.1012471}, pages = {20}, year = {2023}, abstract = {Achilles tendinopathy (AT) is a debilitating injury in athletes, especially for those engaged in repetitive stretch-shortening cycle activities. Clinical risk factors are numerous, but it has been suggested that altered biomechanics might be associated with AT. No systematic review has been conducted investigating these biomechanical alterations in specifically athletic populations. Therefore, the aim of this systematic review was to compare the lower-limb biomechanics of athletes with AT to athletically matched asymptomatic controls. Databases were searched for relevant studies investigating biomechanics during gait activities and other motor tasks such as hopping, isolated strength tasks, and reflex responses. Inclusion criteria for studies were an AT diagnosis in at least one group, cross-sectional or prospective data, at least one outcome comparing biomechanical data between an AT and healthy group, and athletic populations. Studies were excluded if patients had Achilles tendon rupture/surgery, participants reported injuries other than AT, and when only within-subject data was available.. Effect sizes (Cohen's d) with 95\% confidence intervals were calculated for relevant outcomes. The initial search yielded 4,442 studies. After screening, twenty studies (775 total participants) were synthesised, reporting on a wide range of biomechanical outcomes. Females were under-represented and patients in the AT group were three years older on average. Biomechanical alterations were identified in some studies during running, hopping, jumping, strength tasks and reflex activity. Equally, several biomechanical variables studied were not associated with AT in included studies, indicating a conflicting picture. Kinematics in AT patients appeared to be altered in the lower limb, potentially indicating a pattern of "medial collapse". Muscular activity of the calf and hips was different between groups, whereby AT patients exhibited greater calf electromyographic amplitudes despite lower plantar flexor strength. Overall, dynamic maximal strength of the plantar flexors, and isometric strength of the hips might be reduced in the AT group. This systematic review reports on several biomechanical alterations in athletes with AT. With further research, these factors could potentially form treatment targets for clinicians, although clinical approaches should take other contributing health factors into account. The studies included were of low quality, and currently no solid conclusions can be drawn.}, language = {en} } @phdthesis{Ehlert2023, author = {Ehlert, Kristian}, title = {Simulations of active galactic nuclei feedback with cosmic rays and magnetic fields}, doi = {10.25932/publishup-57816}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-578168}, school = {Universit{\"a}t Potsdam}, pages = {155}, year = {2023}, abstract = {The central gas in half of all galaxy clusters shows short cooling times. Assuming unimpeded cooling, this should lead to high star formation and mass cooling rates, which are not observed. Instead, it is believed that condensing gas is accreted by the central black hole that powers an active galactic nuclei jet, which heats the cluster. The detailed heating mechanism remains uncertain. A promising mechanism invokes cosmic ray protons that scatter on self-generated magnetic fluctuations, i.e. Alfv{\´e}n waves. Continuous damping of Alfv{\´e}n waves provides heat to the intracluster medium. Previous work has found steady state solutions for a large sample of clusters where cooling is balanced by Alfv{\´e}nic wave heating. To verify modeling assumptions, we set out to study cosmic ray injection in three-dimensional magnetohydrodynamical simulations of jet feedback in an idealized cluster with the moving-mesh code arepo. We analyze the interaction of jet-inflated bubbles with the turbulent magnetized intracluster medium. Furthermore, jet dynamics and heating are closely linked to the largely unconstrained jet composition. Interactions of electrons with photons of the cosmic microwave background result in observational signatures that depend on the bubble content. Those recent observations provided evidence for underdense bubbles with a relativistic filling while adopting simplifying modeling assumptions for the bubbles. By reproducing the observations with our simulations, we confirm the validity of their modeling assumptions and as such, confirm the important finding of low-(momentum) density jets. In addition, the velocity and magnetic field structure of the intracluster medium have profound consequences for bubble evolution and heating processes. As velocity and magnetic fields are physically coupled, we demonstrate that numerical simulations can help link and thereby constrain their respective observables. Finally, we implement the currently preferred accretion model, cold accretion, into the moving-mesh code arepo and study feedback by light jets in a radiatively cooling magnetized cluster. While self-regulation is attained independently of accretion model, jet density and feedback efficiencies, we find that in order to reproduce observed cold gas morphology light jets are preferred.}, language = {en} } @phdthesis{Rolo2023, author = {Rolo, David}, title = {Assembly of photosystem I in thylakoid membranes}, school = {Universit{\"a}t Potsdam}, pages = {177}, year = {2023}, abstract = {The light reactions of photosynthesis are carried out by a series of multiprotein complexes embedded in thylakoid membranes. Among them, photosystem I (PSI), acting as plastocyanin-ferderoxin oxidoreductase, catalyzes the final reaction. Together with light-harvesting antenna I, PSI forms a high-molecular-weight supercomplex of ~600 kDa, consisting of eighteen subunits and nearly two hundred co-factors. Assembly of the various components into a functional thylakoid membrane complex requires precise coordination, which is provided by the assembly machinery. Although this includes a small number of proteins (PSI assembly factors) that have been shown to play a role in the formation of PSI, the process as a whole, as well as the intricacy of its members, remains largely unexplored. In the present work, two approaches were used to find candidate PSI assembly factors. First, EnsembleNet was used to select proteins thought to be functionally related to known PSI assembly factors in Arabidopsis thaliana (approach I), and second, co-immunoprecipitation (Co-IP) of tagged PSI assembly factors in Nicotiana tabacum was performed (approach II). Here, the novel PSI assembly factors designated CO-EXPRESSED WITH PSI ASSEMBLY 1 (CEPA1) and Ycf4-INTERACTING PROTEIN 1 (Y4IP1) were identified. A. thaliana null mutants for CEPA1 and Y4IP1 showed a growth phenotype and pale leaves compared with the wild type. Biophysical experiments using pulse amplitude modulation (PAM) revealed insufficient electron transport on the PSII acceptor side. Biochemical analyses revealed that both CEPA1 and Y4IP1 are specifically involved in PSI accumulation in A. thaliana at the post-translational level but are not essential. Consistent with their roles as factors in the assembly of a thylakoid membrane protein complex, the two proteins localize to thylakoid membranes. Remarkably, cepa1 y4ip1 double mutants exhibited lethal phenotypes in early developmental stages under photoautotrophic growth. Finally, co-IP and native gel experiments supported a possible role for CEPA1 and Y4IP1 in mediating PSI assembly in conjunction with other PSI assembly factors (e.g., PPD1- and PSA3-CEPA1 and Ycf4-Y4IP1). The fact that CEPA1 and Y4IP1 are found exclusively in green algae and higher plants suggests eukaryote-specific functions. Although the specific mechanisms need further investigation, CEPA1 and Y4IP1 are two novel assembly factors that contribute to PSI formation.}, language = {en} } @phdthesis{DeAndradeQueiroz2023, author = {De Andrade Queiroz, Anna Barbara}, title = {The Milky Way disks, bulge, and bar sub-populations}, doi = {10.25932/publishup-59061}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-590615}, school = {Universit{\"a}t Potsdam}, pages = {xii, 187}, year = {2023}, abstract = {In recent decades, astronomy has seen a boom in large-scale stellar surveys of the Galaxy. The detailed information obtained about millions of individual stars in the Milky Way is bringing us a step closer to answering one of the most outstanding questions in astrophysics: how do galaxies form and evolve? The Milky Way is the only galaxy where we can dissect many stars into their high-dimensional chemical composition and complete phase space, which analogously as fossil records can unveil the past history of the genesis of the Galaxy. The processes that lead to large structure formation, such as the Milky Way, are critical for constraining cosmological models; we call this line of study Galactic archaeology or near-field cosmology. At the core of this work, we present a collection of efforts to chemically and dynamically characterise the disks and bulge of our Galaxy. The results we present in this thesis have only been possible thanks to the advent of the Gaia astrometric satellite, which has revolutionised the field of Galactic archaeology by precisely measuring the positions, parallax distances and motions of more than a billion stars. Another, though not less important, breakthrough is the APOGEE survey, which has observed spectra in the near-infrared peering into the dusty regions of the Galaxy, allowing us to determine detailed chemical abundance patterns in hundreds of thousands of stars. To accurately depict the Milky Way structure, we use and develop the Bayesian isochrone fitting tool/code called StarHorse; this software can predict stellar distances, extinctions and ages by combining astrometry, photometry and spectroscopy based on stellar evolutionary models. The StarHorse code is pivotal to calculating distances where Gaia parallaxes alone cannot allow accurate estimates. We show that by combining Gaia, APOGEE, photometric surveys and using StarHorse, we can produce a chemical cartography of the Milky way disks from their outermost to innermost parts. Such a map is unprecedented in the inner Galaxy. It reveals a continuity of the bimodal chemical pattern previously detected in the solar neighbourhood, indicating two populations with distinct formation histories. Furthermore, the data reveals a chemical gradient within the thin disk where the content of 𝛼-process elements and metals is higher towards the centre. Focusing on a sample in the inner MW we confirm the extension of the chemical duality to the innermost regions of the Galaxy. We find stars with bar shape orbits to show both high- and low-𝛼 abundances, suggesting the bar formed by secular evolution trapping stars that already existed. By analysing the chemical orbital space of the inner Galactic regions, we disentangle the multiple populations that inhabit this complex region. We reveal the presence of the thin disk, thick disk, bar, and a counter-rotating population, which resembles the outcome of a perturbed proto-Galactic disk. Our study also finds that the inner Galaxy holds a high quantity of super metal-rich stars up to three times solar suggesting it is a possible repository of old super-metal-rich stars found in the solar neighbourhood. We also enter into the complicated task of deriving individual stellar ages. With StarHorse, we calculate the ages of main-sequence turn-off and sub-giant stars for several public spectroscopic surveys. We validate our results by investigating linear relations between chemical abundances and time since the 𝛼 and neutron capture elements are sensitive to age as a reflection of the different enrichment timescales of these elements. For further study of the disks in the solar neighbourhood, we use an unsupervised machine learning algorithm to delineate a multidimensional separation of chrono-chemical stellar groups revealing the chemical thick disk, the thin disk, and young 𝛼-rich stars. The thick disk is shown to have a small age dispersion indicating its fast formation contrary to the thin disk that spans a wide range of ages. With groundbreaking data, this thesis encloses a detailed chemo-dynamical view of the disk and bulge of our Galaxy. Our findings on the Milky Way can be linked to the evolution of high redshift disk galaxies, helping to solve the conundrum of galaxy formation.}, language = {en} } @phdthesis{Werhahn2023, author = {Werhahn, Maria}, title = {Simulating galaxy evolution with cosmic rays: the multi-frequency view}, doi = {10.25932/publishup-57285}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572851}, school = {Universit{\"a}t Potsdam}, pages = {5, 220}, year = {2023}, abstract = {Cosmic rays (CRs) constitute an important component of the interstellar medium (ISM) of galaxies and are thought to play an essential role in governing their evolution. In particular, they are able to impact the dynamics of a galaxy by driving galactic outflows or heating the ISM and thereby affecting the efficiency of star-formation. Hence, in order to understand galaxy formation and evolution, we need to accurately model this non-thermal constituent of the ISM. But except in our local environment within the Milky Way, we do not have the ability to measure CRs directly in other galaxies. However, there are many ways to indirectly observe CRs via the radiation they emit due to their interaction with magnetic and interstellar radiation fields as well as with the ISM. In this work, I develop a numerical framework to calculate the spectral distribution of CRs in simulations of isolated galaxies where a steady-state between injection and cooling is assumed. Furthermore, I calculate the non-thermal emission processes arising from the modelled CR proton and electron spectra ranging from radio wavelengths up to the very high-energy gamma-ray regime. I apply this code to a number of high-resolution magneto-hydrodynamical (MHD) simulations of isolated galaxies, where CRs are included. This allows me to study their CR spectra and compare them to observations of the CR proton and electron spectra by the Voyager-1 satellite and the AMS-02 instrument in order to reveal the origin of the measured spectral features. Furthermore, I provide detailed emission maps, luminosities and spectra of the non-thermal emission from our simulated galaxies that range from dwarfs to Milk-Way analogues to starburst galaxies at different evolutionary stages. I successfully reproduce the observed relations between the radio and gamma-ray luminosities with the far-infrared (FIR) emission of star-forming (SF) galaxies, respectively, where the latter is a good tracer of the star-formation rate. I find that highly SF galaxies are close to the limit where their CR population would lose all of their energy due to the emission of radiation, whereas CRs tend to escape low SF galaxies more quickly. On top of that, I investigate the properties of CR transport that are needed in order to match the observed gamma-ray spectra. Furthermore, I uncover the underlying processes that enable the FIR-radio correlation (FRC) to be maintained even in starburst galaxies and find that thermal free-free-emission naturally explains the observed radio spectra in SF galaxies like M82 and NGC 253 thus solving the riddle of flat radio spectra that have been proposed to contradict the observed tight FRC. Lastly, I scrutinise the steady-state modelling of the CR proton component by investigating for the first time the influence of spectrally resolved CR transport in MHD simulations on the hadronic gamma-ray emission of SF galaxies revealing new insights into the observational signatures of CR transport both spectrally and spatially.}, language = {en} } @article{SmithZottaBoultonetal.2023, author = {Smith, Taylor and Zotta, Ruxandra-Maria and Boulton, Chris A. and Lenton, Timothy M. and Dorigo, Wouter and Boers, Niklas}, title = {Reliability of resilience estimation based on multi-instrument time series}, series = {Earth System Dynamics}, volume = {14}, journal = {Earth System Dynamics}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {2190-4987}, doi = {10.5194/esd-14-173-2023}, pages = {173 -- 183}, year = {2023}, abstract = {Many widely used observational data sets are comprised of several overlapping instrument records. While data inter-calibration techniques often yield continuous and reliable data for trend analysis, less attention is generally paid to maintaining higher-order statistics such as variance and autocorrelation. A growing body of work uses these metrics to quantify the stability or resilience of a system under study and potentially to anticipate an approaching critical transition in the system. Exploring the degree to which changes in resilience indicators such as the variance or autocorrelation can be attributed to non-stationary characteristics of the measurement process - rather than actual changes in the dynamical properties of the system - is important in this context. In this work we use both synthetic and empirical data to explore how changes in the noise structure of a data set are propagated into the commonly used resilience metrics lag-one autocorrelation and variance. We focus on examples from remotely sensed vegetation indicators such as vegetation optical depth and the normalized difference vegetation index from different satellite sources. We find that time series resulting from mixing signals from sensors with varied uncertainties and covering overlapping time spans can lead to biases in inferred resilience changes. These biases are typically more pronounced when resilience metrics are aggregated (for example, by land-cover type or region), whereas estimates for individual time series remain reliable at reasonable sensor signal-to-noise ratios. Our work provides guidelines for the treatment and aggregation of multi-instrument data in studies of critical transitions and resilience.}, language = {en} } @phdthesis{Kruse2023, author = {Kruse, Marlen}, title = {Characterization of biomolecules and their interactions using electrically controllable DNA nanolevers}, doi = {10.25932/publishup-57738}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577384}, school = {Universit{\"a}t Potsdam}, pages = {100, xxii}, year = {2023}, abstract = {In this work, binding interactions between biomolecules were analyzed by a technique that is based on electrically controllable DNA nanolevers. The technique was applied to virus-receptor interactions for the first time. As receptors, primarily peptides on DNA nanostructures and antibodies were utilized. The DNA nanostructures were integrated into the measurement technique and enabled the presentation of the peptides in a controllable geometrical order. The number of peptides could be varied to be compatible to the binding sites of the viral surface proteins. Influenza A virus served as a model system, on which the general measurability was demonstrated. Variations of the receptor peptide, the surface ligand density, the measurement temperature and the virus subtypes showed the sensitivity and applicability of the technology. Additionally, the immobilization of virus particles enabled the measurement of differences in oligovalent binding of DNA-peptide nanostructures to the viral proteins in their native environment. When the coronavirus pandemic broke out in 2020, work on binding interactions of a peptide from the hACE2 receptor and the spike protein of the SARS-CoV-2 virus revealed that oligovalent binding can be quantified in the switchSENSE technology. It could also be shown that small changes in the amino acid sequence of the spike protein resulted in complete loss of binding. Interactions of the peptide and inactivated virus material as well as pseudo virus particles could be measured. Additionally, the switchSENSE technology was utilized to rank six antibodies for their binding affinity towards the nucleocapsid protein of SARS-CoV-2 for the development of a rapid antigen test device. The technique was furthermore employed to show binding of a non-enveloped virus (adenovirus) and a virus-like particle (norovirus-like particle) to antibodies. Apart from binding interactions, the use of DNA origami levers with a length of around 50 nm enabled the switching of virus material. This proved that the technology is also able to size objects with a hydrodynamic diameter larger than 14 nm. A theoretical work on diffusion and reaction-limited binding interactions revealed that the technique and the chosen parameters enable the determination of binding rate constants in the reaction-limited regime. Overall, the applicability of the switchSENSE technique to virus-receptor binding interactions could be demonstrated on multiple examples. While there are challenges that remain, the setup enables the determination of affinities between viruses and receptors in their native environment. Especially the possibilities regarding the quantification of oligo- and multivalent binding interactions could be presented.}, language = {en} } @phdthesis{Drobyshev2023, author = {Drobyshev, Evgenii}, title = {Toxic or beneficial? What is the role of food-relevant selenium species selenoneine?}, doi = {10.25932/publishup-57379}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-573794}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 100}, year = {2023}, abstract = {Selenium (Se) is an essential trace element that is ubiquitously present in the environment in small concentrations. Essential functions of Se in the human body are manifested through the wide range of proteins, containing selenocysteine as their active center. Such proteins are called selenoproteins which are found in multiple physiological processes like antioxidative defense and the regulation of thyroid hormone functions. Therefore, Se deficiency is known to cause a broad spectrum of physiological impairments, especially in endemic regions with low Se content. Nevertheless, being an essential trace element, Se could exhibit toxic effects, if its intake exceeds tolerable levels. Accordingly, this range between deficiency and overexposure represents optimal Se supply. However, this range was found to be narrower than for any other essential trace element. Together with significantly varying Se concentrations in soil and the presence of specific bioaccumulation factors, this represents a noticeable difficulty in the assessment of Se epidemiological status. While Se is acting in the body through multiple selenoproteins, its intake occurs mainly in form of small organic or inorganic molecular mass species. Thus, Se exposure not only depends on daily intake but also on the respective chemical form, in which it is present. The essential functions of selenium have been known for a long time and its primary forms in different food sources have been described. Nevertheless, analytical capabilities for a comprehensive investigation of Se species and their derivatives have been introduced only in the last decades. A new Se compound was identified in 2010 in the blood and tissues of bluefin tuna. It was called selenoneine (SeN) since it is an isologue of naturally occurring antioxidant ergothioneine (ET), where Se replaces sulfur. In the following years, SeN was identified in a number of edible fish species and attracted attention as a new dietary Se source and potentially strong antioxidant. Studies in populations whose diet largely relies on fish revealed that SeN represents the main non-protein bound Se pool in their blood. First studies, conducted with enriched fish extracts, already demonstrated the high antioxidative potential of SeN and its possible function in the detoxification of methylmercury in fish. Cell culture studies demonstrated, that SeN can utilize the same transporter as ergothioneine, and SeN metabolite was found in human urine. Until recently, studies on SeN properties were severely limited due to the lack of ways to obtain the pure compound. As a predisposition to this work was firstly a successful approach to SeN synthesis in the University of Graz, utilizing genetically modified yeasts. In the current study, by use of HepG2 liver carcinoma cells, it was demonstrated, that SeN does not cause toxic effectsup to 100 μM concentration in hepatocytes. Uptake experiments showed that SeN is not bioavailable to the used liver cells. In the next part a blood-brain barrier (BBB) model, based on capillary endothelial cells from the porcine brain, was used to describe the possible transfer of SeN into the central nervous system (CNS). The assessment of toxicity markers in these endothelial cells and monitoring of barrier conditions during transfer experiments demonstrated the absence of toxic effects from SeN on the BBB endothelium up to 100 μM concentration. Transfer data for SeN showed slow but substantial transfer. A statistically significant increase was observed after 48 hours following SeN incubation from the blood-facing side of the barrier. However, an increase in Se content was clearly visible already after 6 hours of incubation with 1 μM of SeN. While the transfer rate of SeN after application of 0.1 μM dose was very close to that for 1 μM, incubation with 10 μM of SeN resulted in a significantly decreased transfer rate. Double-sided application of SeN caused no side-specific transfer of SeN, thus suggesting a passive diffusion mechanism of SeN across the BBB. This data is in accordance with animal studies, where ET accumulation was observed in the rat brain, even though rat BBB does not have the primary ET transporter - OCTN1. Investigation of capillary endothelial cell monolayers after incubation with SeN and reference selenium compounds showed no significant increase of intracellular selenium concentration. Speciesspecific Se measurements in medium samples from apical and basolateral compartments, as good as in cell lysates, showed no SeN metabolization. Therefore, it can be concluded that SeN may reach the brain without significant transformation. As the third part of this work, the assessment of SeN antioxidant properties was performed in Caco-2 human colorectal adenocarcinoma cells. Previous studies demonstrated that the intestinal epithelium is able to actively transport SeN from the intestinal lumen to the blood side and accumulate SeN. Further investigation within current work showed a much higher antioxidant potential of SeN compared to ET. The radical scavenging activity after incubation with SeN was close to the one observed for selenite and selenomethionine. However, the SeN effect on the viability of intestinal cells under oxidative conditions was close to the one caused by ET. To answer the question if SeN is able to be used as a dietary Se source and induce the activity of selenoproteins, the activity of glutathione peroxidase (GPx) and the secretion of selenoprotein P (SelenoP) were measured in Caco-2 cells, additionally. As expected, reference selenium compounds selenite and selenomethionine caused efficient induction of GPx activity. In contrast to those SeN had no effect on GPx activity. To examine the possibility of SeN being embedded into the selenoproteome, SelenoP was measured in a culture medium. Even though Caco-2 cells effectively take up SeN in quantities much higher than selenite or selenomethionine, no secretion of SelenoP was observed after SeN incubation. Summarizing, we can conclude that SeN can hardly serve as a Se source for selenoprotein synthesis. However, SeN exhibit strong antioxidative properties, which appear when sulfur in ET is exchanged by Se. Therefore, SeN is of particular interest for research not as part of Se metabolism, but important endemic dietary antioxidant.}, language = {en} } @phdthesis{Schmitz2023, author = {Schmitz, Se{\´a}n}, title = {Using low-cost sensors to gather high resolution measurements of air quality in urban environments and inform mobility policy}, doi = {10.25932/publishup-60105}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-601053}, school = {Universit{\"a}t Potsdam}, pages = {180}, year = {2023}, abstract = {Air pollution has been a persistent global problem in the past several hundred years. While some industrialized nations have shown improvements in their air quality through stricter regulation, others have experienced declines as they rapidly industrialize. The WHO's 2021 update of their recommended air pollution limit values reflects the substantial impacts on human health of pollutants such as NO2 and O3, as recent epidemiological evidence suggests substantial long-term health impacts of air pollution even at low concentrations. Alongside developments in our understanding of air pollution's health impacts, the new technology of low-cost sensors (LCS) has been taken up by both academia and industry as a new method for measuring air pollution. Due primarily to their lower cost and smaller size, they can be used in a variety of different applications, including in the development of higher resolution measurement networks, in source identification, and in measurements of air pollution exposure. While significant efforts have been made to accurately calibrate LCS with reference instrumentation and various statistical models, accuracy and precision remain limited by variable sensor sensitivity. Furthermore, standard procedures for calibration still do not exist and most proprietary calibration algorithms are black-box, inaccessible to the public. This work seeks to expand the knowledge base on LCS in several different ways: 1) by developing an open-source calibration methodology; 2) by deploying LCS at high spatial resolution in urban environments to test their capability in measuring microscale changes in urban air pollution; 3) by connecting LCS deployments with the implementation of local mobility policies to provide policy advice on resultant changes in air quality. In a first step, it was found that LCS can be consistently calibrated with good performance against reference instrumentation using seven general steps: 1) assessing raw data distribution, 2) cleaning data, 3) flagging data, 4) model selection and tuning, 5) model validation, 6) exporting final predictions, and 7) calculating associated uncertainty. By emphasizing the need for consistent reporting of details at each step, most crucially on model selection, validation, and performance, this work pushed forward with the effort towards standardization of calibration methodologies. In addition, with the open-source publication of code and data for the seven-step methodology, advances were made towards reforming the largely black-box nature of LCS calibrations. With a transparent and reliable calibration methodology established, LCS were then deployed in various street canyons between 2017 and 2020. Using two types of LCS, metal oxide (MOS) and electrochemical (EC), their performance in capturing expected patterns of urban NO2 and O3 pollution was evaluated. Results showed that calibrated concentrations from MOS and EC sensors matched general diurnal patterns in NO2 and O3 pollution measured using reference instruments. While MOS proved to be unreliable for discerning differences among measured locations within the urban environment, the concentrations measured with calibrated EC sensors matched expectations from modelling studies on NO2 and O3 pollution distribution in street canyons. As such, it was concluded that LCS are appropriate for measuring urban air quality, including for assisting urban-scale air pollution model development, and can reveal new insights into air pollution in urban environments. To achieve the last goal of this work, two measurement campaigns were conducted in connection with the implementation of three mobility policies in Berlin. The first involved the construction of a pop-up bike lane on Kottbusser Damm in response to the COVID-19 pandemic, the second surrounded the temporary implementation of a community space on B{\"o}ckhstrasse, and the last was focused on the closure of a portion of Friedrichstrasse to all motorized traffic. In all cases, measurements of NO2 were collected before and after the measure was implemented to assess changes in air quality resultant from these policies. Results from the Kottbusser Damm experiment showed that the bike-lane reduced NO2 concentrations that cyclists were exposed to by 22 ± 19\%. On Friedrichstrasse, the street closure reduced NO2 concentrations to the level of the urban background without worsening the air quality on side streets. These valuable results were communicated swiftly to partners in the city administration responsible for evaluating the policies' success and future, highlighting the ability of LCS to provide policy-relevant results. As a new technology, much is still to be learned about LCS and their value to academic research in the atmospheric sciences. Nevertheless, this work has advanced the state of the art in several ways. First, it contributed a novel open-source calibration methodology that can be used by a LCS end-users for various air pollutants. Second, it strengthened the evidence base on the reliability of LCS for measuring urban air quality, finding through novel deployments in street canyons that LCS can be used at high spatial resolution to understand microscale air pollution dynamics. Last, it is the first of its kind to connect LCS measurements directly with mobility policies to understand their influences on local air quality, resulting in policy-relevant findings valuable for decisionmakers. It serves as an example of the potential for LCS to expand our understanding of air pollution at various scales, as well as their ability to serve as valuable tools in transdisciplinary research.}, language = {en} } @phdthesis{Galushchinskiy2023, author = {Galushchinskiy, Alexey}, title = {Carbon nitride: a flexible platform for net-oxidative and net-neutral photocatalysis}, doi = {10.25932/publishup-61092}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610923}, school = {Universit{\"a}t Potsdam}, pages = {351}, year = {2023}, abstract = {Solar photocatalysis is the one of leading concepts of research in the current paradigm of sustainable chemical industry. For actual practical implementation of sunlight-driven catalytic processes in organic synthesis, a cheap, efficient, versatile and robust heterogeneous catalyst is necessary. Carbon nitrides are a class of organic semiconductors who are known to fulfill these requirements. First, current state of solar photocatalysis in economy, industry and lab research is overviewed, outlining EU project funding, prospective synthetic and reforming bulk processes, small scale solar organic chemistry, and existing reactor designs and prototypes, concluding feasibility of the approach. Then, the photocatalytic aerobic cleavage of oximes to corresponding aldehydes and ketones by anionic poly(heptazine imide) carbon nitride is discussed. The reaction provides a feasible method of deprotection and formation of carbonyl compounds from nitrosation products and serves as a convenient model to study chromoselectivity and photophysics of energy transfer in heterogeneous photocatalysis. Afterwards, the ability of mesoporous graphitic carbon nitride to conduct proton-coupled electron transfer was utilized for the direct oxygenation of 1,3-oxazolidin-2-ones to corresponding 1,3-oxazlidine-2,4-diones. This reaction provides an easier access to a key scaffold of diverse types of drugs and agrochemicals. Finally, a series of novel carbon nitrides based on poly(triazine imide) and poly(heptazine imide) structure was synthesized from cyanamide and potassium rhodizonate. These catalysts demonstrated a good performance in a set of photocatalytic benchmark reactions, including aerobic oxidation, dual nickel photoredox catalysis, hydrogen peroxide evolution and chromoselective transformation of organosulfur precursors. Concluding, the scope of carbon nitride utilization for net-oxidative and net-neutral photocatalytic processes was expanded, and a new tunable platform for catalyst synthesis was discovered.}, language = {en} } @misc{Paetzel2023, type = {Master Thesis}, author = {P{\"a}tzel, Jonas}, title = {Seismic site characterization using broadband and DAS ambient vibration measurements on Mt Etna, Italy}, doi = {10.25932/publishup-61379}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613793}, school = {Universit{\"a}t Potsdam}, pages = {95}, year = {2023}, abstract = {Both horizontal-to-vertical (H/V) spectral ratios and the spatial autocorrelation method (SPAC) have proven to be valuable tools to gain insight into local site effects by ambient noise measurements. Here, the two methods are employed to assess the subsurface velocity structure at the Piano delle Concazze area on Mt Etna. Volcanic tremor records from an array of 26 broadband seismometers is processed and a strong variability of H/V ratios during periods of increased volcanic activity is found. From the spatial distribution of H/V peak frequencies, a geologic structure in the north-east of Piano delle Concazze is imaged which is interpreted as the Ellittico caldera rim. The method is extended to include both velocity data from the broadband stations and distributed acoustic sensing data from a co-located 1.5 km long fibre optic cable. High maximum amplitude values of the resulting ratios along the trajectory of the cable coincide with known faults. The outcome also indicates previously unmapped parts of a fault. The geologic interpretation is in good agreement with inversion results from magnetic survey data. Using the neighborhood algorithm, spatial autocorrelation curves obtained from the modified SPAC are inverted alone and jointly with the H/V peak frequencies for 1D shear wave velocity profiles. The obtained models are largely consistent with published models and were able to validate the results from the fibre optic cable.}, language = {en} } @phdthesis{Braun2023, author = {Braun, Tobias}, title = {Recurrences in past climates}, doi = {10.25932/publishup-58690}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-586900}, school = {Universit{\"a}t Potsdam}, pages = {xxviii, 251}, year = {2023}, abstract = {Our ability to predict the state of a system relies on its tendency to recur to states it has visited before. Recurrence also pervades common intuitions about the systems we are most familiar with: daily routines, social rituals and the return of the seasons are just a few relatable examples. To this end, recurrence plots (RP) provide a systematic framework to quantify the recurrence of states. Despite their conceptual simplicity, they are a versatile tool in the study of observational data. The global climate is a complex system for which an understanding based on observational data is not only of academical relevance, but vital for the predurance of human societies within the planetary boundaries. Contextualizing current global climate change, however, requires observational data far beyond the instrumental period. The palaeoclimate record offers a valuable archive of proxy data but demands methodological approaches that adequately address its complexities. In this regard, the following dissertation aims at devising novel and further developing existing methods in the framework of recurrence analysis (RA). The proposed research questions focus on using RA to capture scale-dependent properties in nonlinear time series and tailoring recurrence quantification analysis (RQA) to characterize seasonal variability in palaeoclimate records ('Palaeoseasonality'). In the first part of this thesis, we focus on the methodological development of novel approaches in RA. The predictability of nonlinear (palaeo)climate time series is limited by abrupt transitions between regimes that exhibit entirely different dynamical complexity (e.g. crossing of 'tipping points'). These possibly depend on characteristic time scales. RPs are well-established for detecting transitions and capture scale-dependencies, yet few approaches have combined both aspects. We apply existing concepts from the study of self-similar textures to RPs to detect abrupt transitions, considering the most relevant time scales. This combination of methods further results in the definition of a novel recurrence based nonlinear dependence measure. Quantifying lagged interactions between multiple variables is a common problem, especially in the characterization of high-dimensional complex systems. The proposed 'recurrence flow' measure of nonlinear dependence offers an elegant way to characterize such couplings. For spatially extended complex systems, the coupled dynamics of local variables result in the emergence of spatial patterns. These patterns tend to recur in time. Based on this observation, we propose a novel method that entails dynamically distinct regimes of atmospheric circulation based on their recurrent spatial patterns. Bridging the two parts of this dissertation, we next turn to methodological advances of RA for the study of Palaeoseasonality. Observational series of palaeoclimate 'proxy' records involve inherent limitations, such as irregular temporal sampling. We reveal biases in the RQA of time series with a non-stationary sampling rate and propose a correction scheme. In the second part of this thesis, we proceed with applications in Palaeoseasonality. A review of common and promising time series analysis methods shows that numerous valuable tools exist, but their sound application requires adaptions to archive-specific limitations and consolidating transdisciplinary knowledge. Next, we study stalagmite proxy records from the Central Pacific as sensitive recorders of mid-Holocene El Ni{\~n}o-Southern Oscillation (ENSO) dynamics. The records' remarkably high temporal resolution allows to draw links between ENSO and seasonal dynamics, quantified by RA. The final study presented here examines how seasonal predictability could play a role for the stability of agricultural societies. The Classic Maya underwent a period of sociopolitical disintegration that has been linked to drought events. Based on seasonally resolved stable isotope records from Yok Balum cave in Belize, we propose a measure of seasonal predictability. It unveils the potential role declining seasonal predictability could have played in destabilizing agricultural and sociopolitical systems of Classic Maya populations. The methodological approaches and applications presented in this work reveal multiple exciting future research avenues, both for RA and the study of Palaeoseasonality.}, language = {en} } @phdthesis{Kunkel2023, author = {Kunkel, Stefanie}, title = {Green industry through industry 4.0? Expected and observed effects of digitalisation in industry for environmental sustainability}, doi = {10.25932/publishup-61395}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613954}, school = {Universit{\"a}t Potsdam}, pages = {vii, 168}, year = {2023}, abstract = {Digitalisation in industry - also called "Industry 4.0" - is seen by numerous actors as an opportunity to reduce the environmental impact of the industrial sector. The scientific assessments of the effects of digitalisation in industry on environmental sustainability, however, are ambivalent. This cumulative dissertation uses three empirical studies to examine the expected and observed effects of digitalisation in industry on environmental sustainability. The aim of this dissertation is to identify opportunities and risks of digitalisation at different system levels and to derive options for action in politics and industry for a more sustainable design of digitalisation in industry. I use an interdisciplinary, socio-technical approach and look at selected countries of the Global South (Study 1) and the example of China (all studies). In the first study (section 2, joint work with Marcel Matthess), I use qualitative content analysis to examine digital and industrial policies from seven different countries in Africa and Asia for expectations regarding the impact of digitalisation on sustainability and compare these with the potentials of digitalisation for sustainability in the respective country contexts. The analysis reveals that the documents express a wide range of vague expectations that relate more to positive indirect impacts of information and communication technology (ICT) use, such as improved energy efficiency and resource management, and less to negative direct impacts of ICT, such as electricity consumption through ICT. In the second study (section 3, joint work with Marcel Matthess, Grischa Beier and Bing Xue), I conduct and analyse interviews with 18 industry representatives of the electronics industry from Europe, Japan and China on digitalisation measures in supply chains using qualitative content analysis. I find that while there are positive expectations regarding the effects of digital technologies on supply chain sustainability, their actual use and observable effects are still limited. Interview partners can only provide few examples from their own companies which show that sustainability goals have already been pursued through digitalisation of the supply chain or where sustainability effects, such as resource savings, have been demonstrably achieved. In the third study (section 4, joint work with Peter Neuh{\"a}usler, Melissa Dachrodt and Marcel Matthess), I conduct an econometric panel data analysis. I examine the relationship between the degree of Industry 4.0, energy consumption and energy intensity in ten manufacturing sectors in China between 2006 and 2019. The results suggest that overall, there is no significant relationship between the degree of Industry 4.0 and energy consumption or energy intensity in manufacturing sectors in China. However, differences can be found in subgroups of sectors. I find a negative correlation of Industry 4.0 and energy intensity in highly digitalised sectors, indicating an efficiency-enhancing effect of Industry 4.0 in these sectors. On the other hand, there is a positive correlation of Industry 4.0 and energy consumption for sectors with low energy consumption, which could be explained by the fact that digitalisation, such as the automation of previously mainly labour-intensive sectors, requires energy and also induces growth effects. In the discussion section (section 6) of this dissertation, I use the classification scheme of the three levels macro, meso and micro, as well as of direct and indirect environmental effects to classify the empirical observations into opportunities and risks, for example, with regard to the probability of rebound effects of digitalisation at the three levels. I link the investigated actor perspectives (policy makers, industry representatives), statistical data and additional literature across the system levels and consider political economy aspects to suggest fields of action for more sustainable (digitalised) industries. The dissertation thus makes two overarching contributions to the academic and societal discourse. First, my three empirical studies expand the limited state of research at the interface between digitalisation in industry and sustainability, especially by considering selected countries in the Global South and the example of China. Secondly, exploring the topic through data and methods from different disciplinary contexts and taking a socio-technical point of view, enables an analysis of (path) dependencies, uncertainties, and interactions in the socio-technical system across different system levels, which have often not been sufficiently considered in previous studies. The dissertation thus aims to create a scientifically and practically relevant knowledge basis for a value-guided, sustainability-oriented design of digitalisation in industry.}, language = {en} } @phdthesis{HerreroAlonso2023, author = {Herrero Alonso, Yohana}, title = {Properties of high-redshift galaxies in different environments}, doi = {10.25932/publishup-61328}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613288}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 114}, year = {2023}, abstract = {The Lyman-𝛼 (Ly𝛼) line commonly assists in the detection of high-redshift galaxies, the so-called Lyman-alpha emitters (LAEs). LAEs are useful tools to study the baryonic matter distribution of the high-redshift universe. Exploring their spatial distribution not only reveals the large-scale structure of the universe at early epochs, but it also provides an insight into the early formation and evolution of the galaxies we observe today. Because dark matter halos (DMHs) serve as sites of galaxy formation, the LAE distribution also traces that of the underlying dark matter. However, the details of this relation and their co-evolution over time remain unclear. Moreover, theoretical studies predict that the spatial distribution of LAEs also impacts their own circumgalactic medium (CGM) by influencing their extended Ly𝛼 gaseous halos (LAHs), whose origin is still under investigation. In this thesis, I make several contributions to improve the knowledge on these fields using samples of LAEs observed with the Multi Unit Spectroscopic Explorer (MUSE) at redshifts of 3 < 𝑧 < 6.}, language = {en} } @phdthesis{IlićPetković2023, author = {Ilić Petković, Nikoleta}, title = {Stars under influence: evidence of tidal interactions between stars and substellar companions}, doi = {10.25932/publishup-61597}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-615972}, school = {Universit{\"a}t Potsdam}, pages = {xi, 137}, year = {2023}, abstract = {Tidal interactions occur between gravitationally bound astrophysical bodies. If their spatial separation is sufficiently small, the bodies can induce tides on each other, leading to angular momentum transfer and altering of evolutionary path the bodies would have followed if they were single objects. The tidal processes are well established in the Solar planet-moon systems and close stellar binary systems. However, how do stars behave if they are orbited by a substellar companion (e.g. a planet or a brown dwarf) on a tight orbit? Typically, a substellar companion inside the corotation radius of a star will migrate toward the star as it loses orbital angular momentum. On the other hand, the star will gain angular momentum which has the potential to increase its rotation rate. The effect should be more pronounced if the substellar companion is more massive. As the stellar rotation rate and the magnetic activity level are coupled, the star should appear more magnetically active under the tidal influence of the orbiting substellar companion. However, the difficulty in proving that a star has a higher magnetic activity level due to tidal interactions lies in the fact that (I) substellar companions around active stars are easier to detect if they are more massive, leading to a bias toward massive companions around active stars and mimicking the tidal interaction effect, and that (II) the age of a main-sequence star cannot be easily determined, leaving the possibility that a star is more active due to its young age. In our work, we overcome these issues by employing wide stellar binary systems where one star hosts a substellar companion, and where the other star provides the magnetic activity baseline for the host star, assuming they have coevolved, and thereby provides the host's activity level if tidal interactions have no effect on it. Firstly, we find that extrasolar planets can noticeably increase the host star's X-ray luminosity and that the effect is more pronounced if the exoplanet is at least Jupiter-like in mass and close to the star. Further, we find that a brown dwarf will have an even stronger effect, as expected, and that the X-ray surface flux difference between the host star and the wide stellar companion is a significant outlier when compared to a large sample of similar wide binary systems without any known substellar companions. This result proves that substellar hosting wide binary systems can be good tools to reveal the tidal effect on host stars, and also show that the typical stellar age indicators as activity or rotation cannot be used for these stars. Finally, knowing that the activity difference is a good tracer of the substellar companion's tidal impact, we develop an analytical method to calculate the modified tidal quality factor Q' of individual host stars, which defines the tidal dissipation efficiency in the convective envelope of a given main-sequence star.}, language = {en} } @phdthesis{Stanke2023, author = {Stanke, Sandra}, title = {AC electrokinetic immobilization of influenza viruses and antibodies on nanoelectrode arrays for on-chip immunoassays}, doi = {10.25932/publishup-61716}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617165}, school = {Universit{\"a}t Potsdam}, pages = {x, 115}, year = {2023}, abstract = {In the present thesis, AC electrokinetic forces, like dielectrophoresis and AC electroosmosis, were demonstrated as a simple and fast method to functionalize the surface of nanoelectrodes with submicrometer sized biological objects. These nanoelectrodes have a cylindrical shape with a diameter of 500 nm arranged in an array of 6256 electrodes. Due to its medical relevance influenza virus as well as anti-influenza antibodies were chosen as a model organism. Common methods to bring antibodies or proteins to biosensor surfaces are complex and time-consuming. In the present work, it was demonstrated that by applying AC electric fields influenza viruses and antibodies can be immobilized onto the nanoelectrodes within seconds without any prior chemical modification of neither the surface nor the immobilized biological object. The distribution of these immobilized objects is not uniform over the entire array, it exhibits a decreasing gradient from the outer row to the inner ones. Different causes for this gradient have been discussed, such as the vortex-shaped fluid motion above the nanoelectrodes generated by, among others, electrothermal fluid flow. It was demonstrated that parts of the accumulated material are permanently immobilized to the electrodes. This is a unique characteristic of the presented system since in the literature the AC electrokinetic immobilization is almost entirely presented as a method just for temporary immobilization. The spatial distribution of the immobilized viral material or the anti-influenza antibodies at the electrodes was observed by either the combination of fluorescence microscopy and deconvolution or by super-resolution microscopy (STED). On-chip immunoassays were performed to examine the suitability of the functionalized electrodes as a potential affinity-based biosensor. Two approaches were pursued: A) the influenza virus as the bio-receptor or B) the influenza virus as the analyte. Different sources of error were eliminated by ELISA and passivation experiments. Hence, the activity of the immobilized object was inspected by incubation with the analyte. This resulted in the successful detection of anti-influenza antibodies by the immobilized viral material. On the other hand, a detection of influenza virus particles by the immobilized anti-influenza antibodies was not possible. The latter might be due to lost activity or wrong orientation of the antibodies. Thus, further examinations on the activity of by AC electric fields immobilized antibodies should follow. When combined with microfluidics and an electrical read-out system, the functionalized chips possess the potential to serve as a rapid, portable, and cost-effective point-of-care (POC) device. This device can be utilized as a basis for diverse applications in diagnosing and treating influenza, as well as various other pathogens.}, language = {en} } @phdthesis{Leins2023, author = {Leins, Johannes A.}, title = {Combining model detail with large scales}, doi = {10.25932/publishup-58283}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582837}, school = {Universit{\"a}t Potsdam}, pages = {xv, 168}, year = {2023}, abstract = {The global climate crisis is significantly contributing to changing ecosystems, loss of biodiversity and is putting numerous species on the verge of extinction. In principle, many species are able to adapt to changing conditions or shift their habitats to more suitable regions. However, change is progressing faster than some species can adjust, or potential adaptation is blocked and disrupted by direct and indirect human action. Unsustainable anthropogenic land use in particular is one of the driving factors, besides global heating, for these ecologically critical developments. Precisely because land use is anthropogenic, it is also a factor that could be quickly and immediately corrected by human action. In this thesis, I therefore assess the impact of three climate change scenarios of increasing intensity in combination with differently scheduled mowing regimes on the long-term development and dispersal success of insects in Northwest German grasslands. The large marsh grasshopper (LMG, Stethophyma grossum, Linn{\´e} 1758) is used as a species of reference for the analyses. It inhabits wet meadows and marshes and has a limited, yet fairly good ability to disperse. Mowing and climate conditions affect the development and mortality of the LMG differently depending on its life stage. The specifically developed simulation model HiLEG (High-resolution Large Environmental Gradient) serves as a tool for investigating and projecting viability and dispersal success under different climate conditions and land use scenarios. It is a spatially explicit, stage- and cohort-based model that can be individually configured to represent the life cycle and characteristics of terrestrial insect species, as well as high-resolution environmental data and the occurrence of external disturbances. HiLEG is a freely available and adjustable software that can be used to support conservation planning in cultivated grasslands. In the three case studies of this thesis, I explore various aspects related to the structure of simulation models per se, their importance in conservation planning in general, and insights regarding the LMG in particular. It became apparent that the detailed resolution of model processes and components is crucial to project the long-term effect of spatially and temporally confined events. Taking into account conservation measures at the regional level has further proven relevant, especially in light of the climate crisis. I found that the LMG is benefiting from global warming in principle, but continues to be constrained by harmful mowing regimes. Land use measures could, however, be adapted in such a way that they allow the expansion and establishment of the LMG without overly affecting agricultural yields. Overall, simulation models like HiLEG can make an important contribution and add value to conservation planning and policy-making. Properly used, simulation results shed light on aspects that might be overlooked by subjective judgment and the experience of individual stakeholders. Even though it is in the nature of models that they are subject to limitations and only represent fragments of reality, this should not keep stakeholders from using them, as long as these limitations are clearly communicated. Similar to HiLEG, models could further be designed in such a way that not only the parameterization can be adjusted as required, but also the implementation itself can be improved and changed as desired. This openness and flexibility should become more widespread in the development of simulation models.}, language = {en} } @article{CohenHattab2023, author = {Cohen-Hattab, Kobi}, title = {Pioneers of Independent Jewish Shipping}, series = {PaRDeS : Journal of the Association for Jewish Studies in Germany}, journal = {PaRDeS : Journal of the Association for Jewish Studies in Germany}, number = {28}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-552-1}, issn = {1614-6492}, doi = {10.25932/publishup-58554}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585542}, pages = {34 -- 50}, year = {2023}, abstract = {The birth of the Yishuv's national shipping company, ZIM was preceded by private enterprise; the sea had not traditionally been a focus of the Zionist movement. In the 1930s, a five-year span of private commercial shipping saw three companies in the Jewish community in Palestine - Palestine Shipping Company, Palestine Maritime Lloyd, and Atid - before shipping was cut short by the outbreak of the Second World War. Despite their brief lifespans and their negligible contribution to general shipping, these companies constituted an important milestone. Their existence helped shift the Yishuv leadership's attitudes about shipping's importance for the community and the need for it to be supported by national institutions.}, language = {en} } @article{Weinmann2023, author = {Weinmann, Franziska}, title = {Mothers of Seafaring}, series = {PaRDeS : Journal of the Association for Jewish Studies in Germany}, journal = {PaRDeS : Journal of the Association for Jewish Studies in Germany}, number = {28}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-552-1}, issn = {1614-6492}, doi = {10.25932/publishup-58556}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585563}, pages = {52 -- 67}, year = {2023}, abstract = {The article aims to trace the contribution of Jewish women in the Yishuv's maritime history. Taking the example of Henrietta Diamond, a founding member and chairperson of the Zebulun Seafaring Society, the article seeks to explore the representation and role of women in a growing Jewish maritime domain from the 1930s to the 1950s. It examines Zionist narratives on the 'New Jew' and the Jewish body and studies their relevance for the emerging field of maritime activities in the Yishuv. By contextualizing the work and depiction of Henrietta Diamond, the article sheds new light on the gendered notions that underlay the emergence of the Jewish maritime domain and illustrates the patterns of inclusion and exclusion in it.}, language = {en} } @masterthesis{Eggers2023, type = {Bachelor Thesis}, author = {Eggers, Nele}, title = {Properties of Arctic aerosol in the transition between Arctic haze to summer season derived by lidar}, doi = {10.25932/publishup-61943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-619438}, school = {Universit{\"a}t Potsdam}, pages = {x, 63}, year = {2023}, abstract = {During the Arctic haze period, the Arctic troposphere consists of larger, yet fewer, aerosol particles than during the summer (Tunved et al., 2013; Quinn et al., 2007). Interannual variability (Graßl and Ritter, 2019; Rinke et al., 2004), as well as unknown origins (Stock et al., 2014) and properties of aerosol complicate modeling these annual aerosol cycles. This thesis investigates the modification of the microphysical properties of Arctic aerosols in the transition from Arctic haze to the summer season. Therefore, lidar measurements of Ny-{\AA}lesund from April 2021 to the end of July 2021 are evaluated based on the aerosols' optical properties. An overview of those properties will be provided. Furthermore, parallel radiosonde data is considered for indication of hygroscopic growth. The annual aerosol cycle in 2021 differs from expectations based on previous studies from Tunved et al. (2013) and Quinn et al. (2007). Developments of backscatter, extinction, aerosol depolarisation, lidar ratio and color ratio show a return of the Arctic haze in May. The haze had already reduced in April, but regrew afterwards. The average Arctic aerosol displays hygroscopic behaviour, meaning growth due to water uptake. To determine such a behaviour is generally laborious because various meteorological circumstances need to be considered. Two case studies provide further information on these possible events. In particular, a day with a rare ice cloud and with highly variable water cloud layers is observed.}, language = {en} } @phdthesis{Pons2023, author = {Pons, Micha{\"e}l}, title = {The Nature of the tectonic shortening in Central Andes}, doi = {10.25932/publishup-60089}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-600892}, school = {Universit{\"a}t Potsdam}, pages = {160}, year = {2023}, abstract = {The Andean Cordillera is a mountain range located at the western South American margin and is part of the Eastern- Circum-Pacific orogenic Belt. The ~7000 km long mountain range is one of the longest on Earth and hosts the second largest orogenic plateau in the world, the Altiplano-Puna plateau. The Andes are known as a non-collisional subduction-type orogen which developed as a result of the interaction between the subducted oceanic Nazca plate and the South American continental plate. The different Andean segments exhibit along-strike variations of morphotectonic provinces characterized by different elevations, volcanic activity, deformation styles, crustal thickness, shortening magnitude and oceanic plate geometry. Most of the present-day elevation can be explained by crustal shortening in the last ~50 Ma, with the shortening magnitude decreasing from ~300 km in the central (15°S-30°S) segment to less than half that in the southern part (30°S-40°S). Several factors were proposed that might control the magnitude and acceleration of shortening of the Central Andes in the last 15 Ma. One important factor is likely the slab geometry. At 27-33°S, the slab dips horizontally at ~100 km depth due to the subduction of the buoyant Juan Fernandez Ridge, forming the Pampean flat-slab. This horizontal subduction is thought to influence the thermo-mechanical state of the Sierras Pampeanas foreland, for instance, by strengthening the lithosphere and promoting the thick-skinned propagation of deformation to the east, resulting in the uplift of the Sierras Pampeanas basement blocks. The flat-slab has migrated southwards from the Altiplano latitude at ~30 Ma to its present-day position and the processes and consequences associated to its passage on the contemporaneous acceleration of the shortening rate in Central Andes remain unclear. Although the passage of the flat-slab could offer an explanation to the acceleration of the shortening, the timing does not explain the two pulses of shortening at about 15 Ma and 4 Ma that are suggested from geological observations. I hypothesize that deformation in the Central Andes is controlled by a complex interaction between the subduction dynamics of the Nazca plate and the dynamic strengthening and weakening of the South American plate due to several upper plate processes. To test this hypothesis, a detailed investigation into the role of the flat-slab, the structural inheritance of the continental plate, and the subduction dynamics in the Andes is needed. Therefore, I have built two classes of numerical thermo-mechanical models: (i) The first class of models are a series of generic E-W-oriented high-resolution 2D subduction models thatinclude flat subduction in order to investigate the role of the subduction dynamics on the temporal variability of the shortening rate in the Central Andes at Altiplano latitudes (~21°S). The shortening rate from the models was then validated with the observed tectonic shortening rate in the Central Andes. (ii) The second class of models are a series of 3D data-driven models of the present-day Pampean flat-slab configuration and the Sierras Pampeanas (26-42°S). The models aim to investigate the relative contribution of the present-day flat subduction and inherited structures in the continental lithosphere on the strain localization. Both model classes were built using the advanced finite element geodynamic code ASPECT. The first main finding of this work is to suggest that the temporal variability of shortening in the Central Andes is primarily controlled by the subduction dynamics of the Nazca plate while it penetrates into the mantle transition zone. These dynamics depends on the westward velocity of the South American plate that provides the main crustal shortening force to the Andes and forces the trench to retreat. When the subducting plate reaches the lower mantle, it buckles on it-self until the forced trench retreat causes the slab to steepen in the upper mantle in contrast with the classical slab-anchoring model. The steepening of the slab hinders the trench causing it to resist the advancing South American plate, resulting in the pulsatile shortening. This buckling and steepening subduction regime could have been initiated because of the overall decrease in the westwards velocity of the South American plate. In addition, the passage of the flat-slab is required to promote the shortening of the continental plate because flat subduction scrapes the mantle lithosphere, thus weakening the continental plate. This process contributes to the efficient shortening when the trench is hindered, followed by mantle lithosphere delamination at ~20 Ma. Finally, the underthrusting of the Brazilian cratonic shield beneath the orogen occurs at ~11 Ma due to the mechanical weakening of the thick sediments covered the shield margin, and due to the decreasing resistance of the weakened lithosphere of the orogen. The second main finding of this work is to suggest that the cold flat-slab strengthens the overriding continental lithosphere and prevents strain localization. Therefore, the deformation is transmitted to the eastern front of the flat-slab segment by the shear stress operating at the subduction interface, thus the flat-slab acts like an indenter that "bulldozes" the mantle-keel of the continental lithosphere. The offset in the propagation of deformation to the east between the flat and steeper slab segments in the south causes the formation of a transpressive dextral shear zone. Here, inherited faults of past tectonic events are reactivated and further localize the deformation in an en-echelon strike-slip shear zone, through a mechanism that I refer to as "flat-slab conveyor". Specifically, the shallowing of the flat-slab causes the lateral deformation, which explains the timing of multiple geological events preceding the arrival of the flat-slab at 33°S. These include the onset of the compression and of the transition between thin to thick-skinned deformation styles resulting from the crustal contraction of the crust in the Sierras Pampeanas some 10 and 6 Myr before the Juan Fernandez Ridge collision at that latitude, respectively.}, language = {en} } @article{Pandey2023, author = {Pandey, Yogesh}, title = {Enriched cell-free and cell-based native membrane derived vesicles (nMV) enabling rapid in-vitro electrophysiological analysis of the voltage-gated sodium channel 1.5.}, series = {Biochimica et Biophysica Acta (BBA) - Biomembranes}, volume = {1865}, journal = {Biochimica et Biophysica Acta (BBA) - Biomembranes}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1879-2642}, doi = {10.1016/j.bbamem.2023.184144}, year = {2023}, abstract = {Here, we demonstrate the utility of native membrane derived vesicles (nMVs) as tools for expeditious electrophysiological analysis of membrane proteins. We used a cell-free (CF) and a cell-based (CB) approach for preparing protein-enriched nMVs. We utilized the Chinese Hamster Ovary (CHO) lysate-based cell-free protein synthesis (CFPS) system to enrich ER-derived microsomes in the lysate with the primary human cardiac voltage-gated sodium channel 1.5 (hNaV1.5; SCN5A) in 3 h. Subsequently, CB-nMVs were isolated from fractions of nitrogen-cavitated CHO cells overexpressing the hNaV1.5. In an integrative approach, nMVs were micro-transplanted into Xenopus laevis oocytes. CB-nMVs expressed native lidocaine-sensitive hNaV1.5 currents within 24 h; CF-nMVs did not elicit any response. Both the CB- and CF-nMV preparations evoked single-channel activity on the planar lipid bilayer while retaining sensitivity to lidocaine application. Our findings suggest a high usability of the quick-synthesis CF-nMVs and maintenance-free CB-nMVs as ready-to-use tools for in-vitro analysis of electrogenic membrane proteins and large, voltage-gated ion channels.}, language = {en} } @phdthesis{Gruner2023, author = {Gruner, David}, title = {New frontiers in gyrochronology}, doi = {10.25932/publishup-61526}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-615268}, school = {Universit{\"a}t Potsdam}, pages = {x, 131}, year = {2023}, abstract = {Late-type stars are by far the most frequent stars in the universe and of fundamental interest to various fields of astronomy - most notably to Galactic archaeology and exoplanet research. However, such stars barely change during their main sequence lifetime; their temperature, luminosity, or chemical composition evolve only very slowly over the course of billions of years. As such, it is difficult to obtain the age of such a star, especially when it is isolated and no other indications (like cluster association) can be used. Gyrochronology offers a way to overcome this problem. Stars, just like all other objects in the universe, rotate and the rate at which stars rotate impacts many aspects of their appearance and evolution. Gyrochronology leverages the observed rotation rate of a late-type main sequence star and its systematic evolution to estimate their ages. Unlike the above-mentioned parameters, the rotation rate of a main sequence star changes drastically throughout its main sequence lifetime; stars spin down. The youngest stars rotate every few hours, whereas much older stars rotate only about once a month, or - in the case of some late M-stars - once in a hundred days. Given that this spindown is systematic (with an additional mass dependence), it gave rise to the idea of using the observed rotation rate of a star (and its mass or a suitable proxy thereof) to estimate a star's age. This has been explored widely in young stellar open clusters but remains essentially unconstrained for stars older than the sun, and K and M stars older than 1 Gyr. This thesis focuses on the continued exploration of the spindown behavior to assess, whether gyrochronology remains applicable for stars of old ages, whether it is universal for late-type main sequence stars (including field stars), and to provide calibration mileposts for spindown models. To accomplish this, I have analyzed data from Kepler space telescope for the open clusters Ruprecht 147 (2.7 Gyr old) and M 67 (4 Gyr). Time series photometry data (light curves) were obtained for both clusters during Kepler's K2 mission. However, due to technical limitations and telescope malfunctions, extracting usable data from the K2 mission to identify (especially long) rotation periods requires extensive data preparation. For Ruprecht 147, I have compiled a list of about 300 cluster members from the literature and adopted preprocessed light curves from the Kepler archive where available. They have been cleaned of the gravest of data artifacts but still contained systematics. After correcting them for said artifacts, I was able to identify rotation periods in 31 of them. For M 67 more effort was taken. My work on Ruprecht 147 has shown the limitations imposed by the preselection of Kepler targets. Therefore, I adopted the time series full frame image directly and performed photometry on a much higher spatial resolution to be able to obtain data for as many stars as possible. This also means that I had to deal with the ubiquitous artifacts in Kepler data. For that, I devised a method that correlates the artificial flux variations with the ongoing drift of the telescope pointing in order to remove it. This process was a large success and I was able to create light curves whose quality match and even exceede those that were created by the Kepler mission - all while operating on higher spatial resolution and processing fainter stars. Ultimately, I was able to identify signs of periodic variability in the (created) light curves for 31 and 47 stars in Ruprecht 147 and M 67, respectively. My data connect well to bluer stars of cluster of the same age and extend for the first time to stars redder than early-K and older than 1 Gyr. The cluster data show a clear flattening in the distribution of Ruprecht 147 and even a downturn for M 67, resulting in a somewhat sinusoidal shape. With that, I have shown that the systematic spindown of stars continues at least until 4 Gyr and stars continue to live on a single surface in age-rotation periods-mass space which allows gyrochronology to be used at least up to that age. However, the shape of the spindown - as exemplified by the newly discovered sinusoidal shape of the cluster sequence - deviates strongly from the expectations. I then compiled an extensive sample of rotation data in open clusters - very much including my own work - and used the resulting cluster skeleton (with each cluster forming a rip in color-rotation period-mass space) to investigate if field stars follow the same spindown as cluster stars. For the field stars, I used wide binaries, which - with their shared origin and coevality - are in a sense the smallest possible open clusters. I devised an empirical method to evaluate the consistency between the rotation rates of the wide binary components and found that the vast majority of them are in fact consistent with what is observed in open clusters. This leads me to conclude that gyrochronology - calibrated on open clusters - can be applied to determine the ages of field stars.}, language = {en} } @phdthesis{Metz2023, author = {Metz, Malte}, title = {Finite fault earthquake source inversions}, doi = {10.25932/publishup-61974}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-619745}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2023}, abstract = {Earthquake modeling is the key to a profound understanding of a rupture. Its kinematics or dynamics are derived from advanced rupture models that allow, for example, to reconstruct the direction and velocity of the rupture front or the evolving slip distribution behind the rupture front. Such models are often parameterized by a lattice of interacting sub-faults with many degrees of freedom, where, for example, the time history of the slip and rake on each sub-fault are inverted. To avoid overfitting or other numerical instabilities during a finite-fault estimation, most models are stabilized by geometric rather than physical constraints such as smoothing. As a basis for the inversion approach of this study, we build on a new pseudo-dynamic rupture model (PDR) with only a few free parameters and a simple geometry as a physics-based solution of an earthquake rupture. The PDR derives the instantaneous slip from a given stress drop on the fault plane, with boundary conditions on the developing crack surface guaranteed at all times via a boundary element approach. As a side product, the source time function on each point on the rupture plane is not constraint and develops by itself without additional parametrization. The code was made publicly available as part of the Pyrocko and Grond Python packages. The approach was compared with conventional modeling for different earthquakes. For example, for the Mw 7.1 2016 Kumamoto, Japan, earthquake, the effects of geometric changes in the rupture surface on the slip and slip rate distributions could be reproduced by simply projecting stress vectors. For the Mw 7.5 2018 Palu, Indonesia, strike-slip earthquake, we also modelled rupture propagation using the 2D Eikonal equation and assuming a linear relationship between rupture and shear wave velocity. This allowed us to give a deeper and faster propagating rupture front and the resulting upward refraction as a new possible explanation for the apparent supershear observed at the Earth's surface. The thesis investigates three aspects of earthquake inversion using PDR: (1) to test whether implementing a simplified rupture model with few parameters into a probabilistic Bayesian scheme without constraining geometric parameters is feasible, and whether this leads to fast and robust results that can be used for subsequent fast information systems (e.g., ground motion predictions). (2) To investigate whether combining broadband and strong-motion seismic records together with near-field ground deformation data improves the reliability of estimated rupture models in a Bayesian inversion. (3) To investigate whether a complex rupture can be represented by the inversion of multiple PDR sources and for what type of earthquakes this is recommended. I developed the PDR inversion approach and applied the joint data inversions to two seismic sequences in different tectonic settings. Using multiple frequency bands and a multiple source inversion approach, I captured the multi-modal behaviour of the Mw 8.2 2021 South Sandwich subduction earthquake with a large, curved and slow rupturing shallow earthquake bounded by two faster and deeper smaller events. I could cross-validate the results with other methods, i.e., P-wave energy back-projection, a clustering analysis of aftershocks and a simple tsunami forward model. The joint analysis of ground deformation and seismic data within a multiple source inversion also shed light on an earthquake triplet, which occurred in July 2022 in SE Iran. From the inversion and aftershock relocalization, I found indications for a vertical separation between the shallower mainshocks within the sedimentary cover and deeper aftershocks at the sediment-basement interface. The vertical offset could be caused by the ductile response of the evident salt layer to stress perturbations from the mainshocks. The applications highlight the versatility of the simple PDR in probabilistic seismic source inversion capturing features of rather different, complex earthquakes. Limitations, as the evident focus on the major slip patches of the rupture are discussed as well as differences to other finite fault modeling methods.}, language = {en} } @phdthesis{Djalali2023, author = {Djalali, Saveh Arman}, title = {Multiresponsive complex emulsions: Concepts for the design of active and adaptive liquid colloidal systems}, doi = {10.25932/publishup-57520}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-575203}, school = {Universit{\"a}t Potsdam}, pages = {151}, year = {2023}, abstract = {Complex emulsions are dispersions of kinetically stabilized multiphasic emulsion droplets comprised of two or more immiscible liquids that provide a novel material platform for the generation of active and dynamic soft materials. In recent years, the intrinsic reconfigurable morphological behavior of complex emulsions, which can be attributed to the unique force equilibrium between the interfacial tensions acting at the various interfaces, has become of fundamental and applied interest. As such, particularly biphasic Janus droplets have been investigated as structural templates for the generation of anisotropic precision objects, dynamic optical elements or as transducers and signal amplifiers in chemo- and bio-sensing applications. In the present thesis, switchable internal morphological responses of complex droplets triggered by stimuli-induced alterations of the balance of interfacial tensions have been explored as a universal building block for the design of multiresponsive, active, and adaptive liquid colloidal systems. A series of underlying principles and mechanisms that influence the equilibrium of interfacial tensions have been uncovered, which allowed the targeted design of emulsion bodies that can alter their shape, bind and roll on surfaces, or change their geometrical shape in response to chemical stimuli. Consequently, combinations of the unique triggerable behavior of Janus droplets with designer surfactants, such as a stimuli-responsive photosurfactant (AzoTAB) resulted for instance in shape-changing soft colloids that exhibited a jellyfish inspired buoyant motion behavior, holding great promise for the design of biological inspired active material architectures and transformable soft robotics. In situ observations of spherical Janus emulsion droplets using a customized side-view microscopic imaging setup with accompanying pendant dropt measurements disclosed the sensitivity regime of the unique chemical-morphological coupling inside complex emulsions and enabled the recording of calibration curves for the extraction of critical parameters of surfactant effectiveness. The deduced new "responsive drop" method permitted a convenient and cost-efficient quantification and comparison of the critical micelle concentrations (CMCs) and effectiveness of various cationic, anionic, and nonionic surfactants. Moreover, the method allowed insightful characterization of stimuli-responsive surfactants and monitoring of the impact of inorganic salts on the CMC and surfactant effectiveness of ionic and nonionic surfactants. Droplet functionalization with synthetic crown ether surfactants yielded a synthetically minimal material platform capable of autonomous and reversible adaptation to its chemical environment through different supramolecular host-guest recognition events. Addition of metal or ammonium salts resulted in the uptake of the resulting hydrophobic complexes to the hydrocarbon hemisphere, whereas addition of hydrophilic ammonium compounds such as amino acids or polypeptides resulted in supramolecular assemblies at the hydrocarbon-water interface of the droplets. The multiresponsive material platform enabled interfacial complexation and thus triggered responses of the droplets to a variety of chemical triggers including metal ions, ammonium compounds, amino acids, antibodies, carbohydrates as well as amino-functionalized solid surfaces. In the final chapter, the first documented optical logic gates and combinatorial logic circuits based on complex emulsions are presented. More specifically, the unique reconfigurable and multiresponsive properties of complex emulsions were exploited to realize droplet-based logic gates of varying complexity using different stimuli-responsive surfactants in combination with diverse readout methods. In summary, different designs for multiresponsive, active, and adaptive liquid colloidal systems were presented and investigated, enabling the design of novel transformative chemo-intelligent soft material platforms.}, language = {en} } @phdthesis{Kim2023, author = {Kim, Jiyong}, title = {Synthesis of InP quantum dots and their applications}, doi = {10.25932/publishup-58535}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585351}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 142}, year = {2023}, abstract = {Technologically important, environmentally friendly InP quantum dots (QDs) typically used as green and red emitters in display devices can achieve exceptional photoluminescence quantum yields (PL QYs) of near-unity (95-100\%) when the-state-of-the-art core/shell heterostructure of the ZnSe inner/ZnS outer shell is elaborately applied. Nevertheless, it has only led to a few industrial applications as QD liquid crystal display (QD-LCD) which is applied to blue backlight units, even though QDs has a lot of possibilities that able to realize industrially feasible applications, such as QD light-emitting diodes (QD‒LEDs) and luminescence solar concentrator (LSC), due to their functionalizable characteristics. Before introducing the main research, the theoretical basis and fundamentals of QDs are described in detail on the basis of the quantum mechanics and experimental synthetic results, where a concept of QD and colloidal QD, a type-I core/shell structure, a transition metal doped semiconductor QDs, the surface chemistry of QD, and their applications (LSC, QD‒LEDs, and EHD jet printing) are sequentially elucidated for better understanding. This doctoral thesis mainly focused on the connectivity between QD materials and QD devices, based on the synthesis of InP QDs that are composed of inorganic core (core/shell heterostructure) and organic shell (surface ligands on the QD surface). In particular, as for the former one (core/shell heterostructure), the ZnCuInS mid-shell as an intermediate layer is newly introduced between a Cu-doped InP core and a ZnS shell for LSC devices. As for the latter one (surface ligands), the ligand effect by 1-octanethiol and chloride ion are investigated for the device stability in QD‒LEDs and the printability of electro-hydrodynamic (EHD) jet printing system, in which this research explores the behavior of surface ligands, based on proton transfer mechanism on the QD surface. Chapter 3 demonstrates the synthesis of strain-engineered highly emissive Cu:InP/Zn-Cu-In-S (ZCIS)/ZnS core/shell/shell heterostructure QDs via a one-pot approach. When this unconventional combination of a ZCIS/ZnS double shelling scheme is introduced to a series of Cu:InP cores with different sizes, the resulting Cu:InP/ZCIS/ZnS QDs with a tunable near-IR PL range of 694-850 nm yield the highest-ever PL QYs of 71.5-82.4\%. These outcomes strongly point to the efficacy of the ZCIS interlayer, which makes the core/shell interfacial strain effectively alleviated, toward high emissivity. The presence of such an intermediate ZCIS layer is further examined by comparative size, structural, and compositional analyses. The end of this chapter briefly introduces the research related to the LSC devices, fabricated from Cu:InP/ZCIS/ZnS QDs, currently in progress. Chapter 4 mainly deals with ligand effect in 1-octanethiol passivation of InP/ZnSe/ZnS QDs in terms of incomplete surface passivation during synthesis. This chapter demonstrates the lack of anionic carboxylate ligands on the surface of InP/ZnSe/ZnS quantum dots (QDs), where zinc carboxylate ligands can be converted to carboxylic acid or carboxylate ligands via proton transfer by 1-octanethiol. The as-synthesized QDs initially have an under-coordinated vacancy surface, which is passivated by solvent ligands such as ethanol and acetone. Upon exposure of 1-octanethiol to the QD surface, 1-octanthiol effectively induces the surface binding of anionic carboxylate ligands (derived from zinc carboxylate ligands) by proton transfer, which consequently exchanges ethanol and acetone ligands that bound on the incomplete QD surface. The systematic chemical analyses, such as thermogravimetric analysis‒mass spectrometry and proton nuclear magnetic resonance spectroscopy, directly show the interplay of surface ligands, and it associates with QD light-emitting diodes (QD‒LEDs). Chapter 5 shows the relation between material stability of QDs and device stability of QD‒LEDs through the investigation of surface chemistry and shell thickness. In typical III-V colloidal InP quantum dots (QDs), an inorganic ZnS outermost shell is used to provide stability when overcoated onto the InP core. However, this work presents a faster photo-degradation of InP/ZnSe/ZnS QDs with a thicker ZnS shell than that with a thin ZnS shell when 1-octanethiol was applied as a sulfur source to form ZnS outmost shell. Herein, 1-octanethiol induces the form of weakly-bound carboxylate ligand via proton transfer on the QD surface, resulting in a faster degradation at UV light even though a thicker ZnS shell was formed onto InP/ZnSe QDs. Detailed insight into surface chemistry was obtained from proton nuclear magnetic resonance spectroscopy and thermogravimetric analysis-mass spectrometry. However, the lifetimes of the electroluminescence devices fabricated from InP/ZnSe/ZnS QDs with a thick or a thin ZnS shell show surprisingly the opposite result to the material stability of QDs, where the QD light-emitting diodes (QD‒LEDs) with a thick ZnS shelled QDs maintained its luminance more stable than that with a thin ZnS shelled QDs. This study elucidates the degradation mechanism of the QDs and the QD light-emitting diodes based on the results and discuss why the material stability of QDs is different from the lifetime of QD‒LEDs. Chapter 6 suggests a method how to improve a printability of EHD jet printing when QD materials are applied to QD ink formulation, where this work introduces the application of GaP mid-shelled InP QDs as a role of surface charge in EHD jet printing technique. In general, GaP intermediate shell has been introduced in III-V colloidal InP quantum dots (QDs) to enhance their thermal stability and quantum efficiency in the case of type-I core/shell/shell heterostructure InP/GaP/ZnSeS QDs. Herein, these highly luminescent InP/GaP/ZnSeS QDs were synthesized and applied to EHD jet printing, by which this study demonstrates that unreacted Ga and Cl ions on the QD surface induce the operating voltage of cone jet and cone jet formation to be reduced and stabilized, respectively. This result indicates GaP intermediate shell not only improves PL QY and thermal stability of InP QDs but also adjusts the critical flow rate required for cone-jet formation. In other words, surface charges of quantum dots can have a significant role in forming cone apex in the EHD capillary nozzle. For an industrially convenient validation of surface charges on the QD surface, Zeta potential analyses of QD solutions as a simple method were performed, as well as inductively coupled plasma optical emission spectrometry (ICP-OES) for a composition of elements. Beyond the generation of highly emissive InP QDs with narrow FWHM, these studies talk about the connection between QD material and QD devices not only to make it a vital jumping-off point for industrially feasible applications but also to reveal from chemical and physical standpoints the origin that obstructs the improvement of device performance experimentally and theoretically.}, language = {en} } @phdthesis{Lepre2023, author = {Lepre, Enrico}, title = {Nitrogen-doped carbonaceous materials for energy and catalysis}, doi = {10.25932/publishup-57739}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577390}, school = {Universit{\"a}t Potsdam}, pages = {153}, year = {2023}, abstract = {Facing the environmental crisis, new technologies are needed to sustain our society. In this context, this thesis aims to describe the properties and applications of carbon-based sustainable materials. In particular, it reports the synthesis and characterization of a wide set of porous carbonaceous materials with high nitrogen content obtained from nucleobases. These materials are used as cathodes for Li-ion capacitors, and a major focus is put on the cathode preparation, highlighting the oxidation resistance of nucleobase-derived materials. Furthermore, their catalytic properties for acid/base and redox reactions are described, pointing to the role of nitrogen speciation on their surfaces. Finally, these materials are used as supports for highly dispersed nickel loading, activating the materials for carbon dioxide electroreduction.}, language = {en} } @phdthesis{Schneider2023, author = {Schneider, Helen}, title = {Reactive eutectic media based on ammonium formate for the valorization of bio-sourced materials}, doi = {10.25932/publishup-61302}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613024}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2023}, abstract = {In the last several decades eutectic mixtures of different compositions were successfully used as solvents for vast amount of chemical processes, and only relatively recently they were discovered to be widely spread in nature. As such they are discussed as a third liquid media of the living cell, that is composed of common cell metabolites. Such media may also incorporate water as a eutectic component in order to regulate properties such as enzyme activity or viscosity. Taking inspiration form such sophisticated use of eutectic mixtures, this thesis will explore the use of reactive eutectic media (REM) for organic synthesis. Such unconventional media are characterized by the reactivity of their components, which means that mixture may assume the role of the solvent as well as the reactant itself. The thesis focuses on novel REM based on ammonium formate and investigates their potential for the valorization of bio-sourced materials. The use of REM allows the performance of a number of solvent-free reactions, which entails the benefits of a superior atom and energy economy, higher yields and faster rates compared to reactions in solution. This is evident for the Maillard reaction between ammonium formate and various monosaccharides for the synthesis of substituted pyrazines as well as for a Leuckart type reaction between ammonium formate and levulinic acid for the synthesis of 5-methyl-2-pyrrolidone. Furthermore, reaction of ammonium formate with citric acid for the synthesis of yet undiscovered fluorophores, shows that synthesis in REM can open up unexpected reaction pathways. Another focus of the thesis is the study of water as a third component in the REM. As a result, the concept of two different dilution regimes (tertiary REM and in REM in solvent) appears useful for understanding the influence of water. It is shown that small amounts of water can be of great benefit for the reaction, by reducing viscosity and at the same time increasing reaction yields. REM based on ammonium formate and organic acids are employed for lignocellulosic biomass treatment. The thesis thereby introduces an alternative approach towards lignocellulosic biomass fractionation that promises a considerable process intensification by the simultaneous generation of cellulose and lignin as well as the production of value-added chemicals from REM components. The thesis investigates the generated cellulose and the pathway to nanocellulose generation and also includes the structural analysis of extracted lignin. Finally, the thesis investigates the potential of microwave heating to run chemical reactions in REM and describes the synergy between these two approaches. Microwave heating for chemical reactions and the use of eutectic mixtures as alternative reaction media are two research fields that are often described in the scope of green chemistry. The thesis will therefore also contain a closer inspection of this terminology and its greater goal of sustainability.}, language = {en} } @phdthesis{Stoermann2023, author = {St{\"o}rmann, Florian Konstantin}, title = {Multifunctional Microballoons for the active and passive control of fluid-flows}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 104, A24}, year = {2023}, abstract = {Functional materials, also called "Smart Materials", are described by their ability to fulfill a desired task through targeted interaction with its environment. Due to this functional integration, such materials are of increased interest, especially in areas where the increasing micronization of components is required. Modern manufacturing processes (e.g. microfluidics) and the availability of a wide variety of functional materials (e.g. shape memory materials) now enable the production of particle-based switching components. This category includes micropumps and microvalves, whose basic function is the active control of liquid flows. One approach in realizing those microcomponents as pursued by this work, enables variable size-switching of water-filled microballoons by implementing a stimulus-sensitive switching motif in the capsule's membrane shell, while being under the influence of a constant driving force. The switching motif with its gatekeeper function has a critical influence on one or more material parameters, which modulate the capsule's resistance against the driving force in microballoon expansion process. The advantage of this concept is that even non-variable analyte conditions, such as concentration levels of ions, can be capitalized to generate external force fields that, under the control of the membrane, cause an inflation of the microballoon by an osmotically driven water influx. In case of osmotic pressure gradients as the driving force for the capsule expansion, material parameters associated with the gatekeeper function are specifically the permeability and the mechanical stiffness of the shell material. While a modulation of the shell permeability could be utilized to kinetically impede the water influx on large time scales, a modulation of the shell's mechanical stiffness even might be utilized to completely prevent the capsule inflation due to a possible non-deformability beneath a certain threshold pressure. In polymer networks, which are a suitable material class for the demanded capsule shell because of their excellent elasticity, both the permeability and the mechanical properties are strongly influenced by the crystallinity of the material. Since the permeability is effectively reduced with increasing crystallinity, while the mechanical stiffness is simultaneously greatly increased, both effects point in the same direction in terms of their functional relationship. For this reason and due to a reversible and contactless modulation of the membrane crystallinity by heat input, crystallites may be suitable switching motifs for controlling the capsule expansion. As second design element of reversible expandable microballoons, the capsule geometry, defined by an aqueous core enveloped by the temperature-sensitive polymer network membrane, should allow an osmotic pressure gradient across the membrane layer. The strength of the inflation pressure and the associated inflation velocity upon membrane melting should be controlled by the salt concentration within the aqueous core, while a turn in the osmotic gradient should furthermore allow the reversible process of capsule deflation. Therefore, it should be possible to build either microvalves and micropumps, while their intended action of either pumping or valving is determined by their state of expansion and the direction of the osmotic pressure gradient.. Microballoons of approximately 300 µm in diameter were formed via droplet-based microfluidics from double-emulsion templates (w/o/w). The elastomeric capsule membrane was formed by photo-crosslinking of methacrylate (MA) functionalized oligo(ε-caprolactone) precursors (≈ 3.8 MA-arms, Mn ≈ 12000 g mol-1) within the organic medium layer (o) via UV-exposure after droplet-formation. After removal of the toluene/chloroform mixture by slow extraction via the continuous aqueous phase, the capsules solidified under the development of a characteristic "mushroom"-like shape at specific experimental conditions (e.g. λ = 308 nm, 57 mJ·s-1·cm-2, 16 min). It could be furthermore shown that in dependency to the process parameters: oligomer concentration and curing-time also spherical capsules were accessible. Long curing-times and high oligomer concentrations at a fixed light-intensity favored the formation of "mushroom"-like capsules, whereas the contrary led to spherical shaped capsules. A comparative study on thin polymer network films of same composition and equal treatment proved a correlation between the film's crosslink density and their contraction capability, while stronger crosslinked polymer networks showed a stronger contraction after solvent removal. In combination with observations during capsule solidification via light-microscopy, where a continuous shaping from almost spherical crosslinked templates to "mushroom"-shaped and solidified capsules was stated, the following mechanism was proposed. In case of low oligomer contents and short curing-times, the contraction of the capsule shell during solvent removal is strongly diminished due to a low degree of crosslinking. Therefore, the solidifying shell could freely collapse onto the aqueous core. In the other case, high oligomer concentrations and long curing-times will favor the formation of highly crosslinked capsule membranes with a strong contraction capability. Due to an observed decentered location of the aqueous core within the swollen polymer network, an uneven radial stress along the capsule's circumference is exerted to the incompressible core. This lead to an uneven contraction during solvent removal and a directed flow of the core fluid into the direction of the minimal stress vector. In consequence, the initially thicker spherical cap contracts, whereas the opposing thinner spherical cap get stretched. The "mushroom"-shape over some advantages over their spherical shaped counterparts, why they were selected for the further experiments. Besides the necessity of a high density of crosslinking for the purpose of extraordinary elasticity and toughness, the form-anisotropy promotes a faster microballoon expandability due to a partial reduction of the membrane thickness. Additionally, pre-stretched regions of thin thickness might provide a better resistance against inflation pressure than spherical but non-stretched capsules of equal membrane thickness. The resulting "mushroom"-shaped microcapsules exhibited a melting point of Tm ≈ 50 - 60 °C and a degree of crystallinity of Xc ≈ 29 - 38 \% depending on the membrane thickness and internal salt content, which is slightly lower than for the non-crosslinked oligomer and reasoned by a limited chain mobility upon crosslinking. Nonetheless, the melting transition of the polymer network was associated with a strong drop in its mechanical stiffness, which was shown to have a strong influence on the osmotic driven expansion of the microcapsules. Capsules that were subjected to osmotic pressures between 1.5 and 4.7 MPa did not expand if the temperature was well below the melting point of the capsule's membrane, i.e. at room temperature. In contrast, a continuous expansion, while approaching asymptotically to a final capsule size, was observed if the temperature exceeded the melting point, i.e. 60 °C. Microballoons, which were kept for 56 days at ∆Π = 1.5 MPa and room temperature, did not change significantly in diameter, why the impact of the mechanical stiffness on the expansion behavior is considered to be the greater than the influence of the shell permeability. The time-resolved expansion behavior of the microballoons above their Tm was subsequently modeled, using difusion equations that were corrected for shape anisotropy and elastic restoring forces. A shape-related and expansion dependent pre-factor was used to dynamically address the influence of the shell thickness differences along the circumference on the inflation velocity, whereas the microballoon's elastic contraction upon inflation was rendered by the inclusion of a hyperelastic constitutive model. An important finding resulting from this model was the pronounced increase in inflation velocity compared to hypothetical capsules with a homogeneous shell thickness, which stresses the benefit of employing shape anisotropic balloon-like capsules in this study. Furthermore, the model was able to predict the finite expandability on basis of entropy-elastic recovery forces and strain-hardening effects. A comparison of six different microballoons with different shell thicknesses and internal salt contents showed the linear relationship between the volumetric expansion, the shell thickness and the applied osmotic pressure, as represented by the model. As the proposed model facilitates the prediction of the expansion kinetics depending on the membranes mechanical and diffusional characteristics, it might be a screening tool for future material selections. In course of the microballoon expansion process, capsules of intermediate diameters could be isolated by recrystallization of the membrane, which is mainly caused by a restoration of the membrane's mechanical stiffness and is otherwise difficult to achieve with other stimuli-sensitive systems. The capsule's crystallinity of intermediate expansion states was nearly unchanged, whereas the lamellar crystal size tends to decreased with the expansion ratio. Therefore, it was assumed that the elastic modulus was only minimally altered and might increased due to the networks segment-chain extension. In addition to the volume increase achieved by inflation, a turn in the osmotic gradient also facilitated the reversible deflation, which was shown in inflation/deflation cycles. These both characteristics of the introduced microballoons are important parameter regarding the realization of micropumps and microvalves. The fixation of expanded microcapsules via recrystallization enabled the storage of entropy-elastic strain-energy, which could be utilized for pumping actions in non-aqueous media. Here, the pumping velocity depended on both, the type of surrounding medium and the applied temperature. Surrounding media that supported the fast transport of pumped liquid showed an accelerated deflation, while high temperatures further accelerate the pumping velocity. Very fast rejection of the incorporated payload was furthermore realized with pierced expanded microballoons, which were subjected to temperatures above their Tm. The possible fixation of intermediate particle sizes provide opportunities for vent constructions that allowed the precise adjustment of specific flow-rates and multiple valve openings and closings. A valve construction was realized by the insertion of a single or multiple microballoons in a microfluidic channel. A complete and a partial closing of the microballoon-valves was demonstrated as a function of the heating period. In this context, a difference between the inflation and deflation velocity was stated, summarizing slower expansion kinetics. Overall, microballoons, which presented both on-demand pumping and reversible valving by a temperature-triggered change in the capsule's volume, might be suitable components that help to design fully integrated LOC devices, due to the implementation of the control switch and controllable inflation/deflation kinetics. In comparison to other state of the art stimuli-sensitive materials, one has to highlight the microballoons capability of stabilizing almost continuously intermediate capsule sizes by simple recrystallization of the microballoon's membrane.}, language = {en} } @article{Draude2023, author = {Draude, Claude}, title = {Working with Diversity in Informatics}, series = {Hochschuldidaktik Informatik HDI 2021 (Commentarii informaticae didacticae)}, journal = {Hochschuldidaktik Informatik HDI 2021 (Commentarii informaticae didacticae)}, number = {13}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-548-4}, issn = {1868-0844}, doi = {10.25932/publishup-61378}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613787}, pages = {13 -- 33}, year = {2023}, abstract = {Diversity is a term that is broadly used and challenging for informatics research, development and education. Diversity concerns may relate to unequal participation, knowledge and methodology, curricula, institutional planning etc. For a lot of these areas, measures, guidelines and best practices on diversity awareness exist. A systemic, sustainable impact of diversity measures on informatics is still largely missing. In this paper I explore what working with diversity and gender concepts in informatics entails, what the main challenges are and provide thoughts for improvement. The paper includes definitions of diversity and intersectionality, reflections on the disciplinary basis of informatics and practical implications of integrating diversity in informatics research and development. In the final part, two concepts from the social sciences and the humanities, the notion of "third space"/hybridity and the notion of "feminist ethics of care", serve as a lens to foster more sustainable ways of working with diversity in informatics.}, language = {en} } @article{GrosseBoeltingScheppachMuehling2023, author = {Große-B{\"o}lting, Gregor and Scheppach, Lukas and M{\"u}hling, Andreas}, title = {The Place of Ethics in Computer Science Education}, series = {Hochschuldidaktik Informatik HDI 2021 (Commentarii informaticae didacticae)}, journal = {Hochschuldidaktik Informatik HDI 2021 (Commentarii informaticae didacticae)}, number = {13}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-548-4}, issn = {1868-0844}, doi = {10.25932/publishup-61598}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-615982}, pages = {173 -- 187}, year = {2023}, abstract = {Ethical issues surrounding modern computing technologies play an increasingly important role in the public debate. Yet, ethics still either doesn't appear at all or only to a very small extent in computer science degree programs. This paper provides an argument for the value of ethics beyond a pure responsibility perspective and describes the positive value of ethical debate for future computer scientists. It also provides a systematic analysis of the module handbooks of 67 German universities and shows that there is indeed a lack of ethics in computer science education. Finally, we present a principled design of a compulsory course for undergraduate students.}, language = {en} } @techreport{GraeberHilbertKoenig2023, type = {Working Paper}, author = {Graeber, Daniel and Hilbert, Viola and K{\"o}nig, Johannes}, title = {Inequality of Opportunity in Wealth}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {69}, issn = {2628-653X}, doi = {10.25932/publishup-60967}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-609673}, pages = {54}, year = {2023}, abstract = {While inequality of opportunity (IOp) in earnings is well studied, the literature on IOp in individual net wealth is scarce to non-existent. This is problematic because both theoretical and empirical evidence show that the position in the wealth and income distribution can significantly diverge.We measure ex-ante IOp in net wealth for Germany using data from the Socio-Economic Panel (SOEP). Ex-ante IOp is defined as the contribution of circumstances to the inequality in net wealth before effort is exerted. The SOEP allows for a direct mapping from individual circumstances to individual net wealth and for a detailed decomposition of net wealth inequality into a variety of circumstances; among them childhood background, intergenerational transfers, and regional characteristics. The ratio of inequality of opportunity to total inequality is stable from 2002 to 2019. This is in sharp contrast to labor earnings, where ex-ante IOp is declining over time. Our estimates suggest that about 62\% of the inequality in net wealth is due to circumstances. The most important circumstances are intergenerational transfers, parental occupation, and the region of birth. In contrast, gender and individuals' own education are the most important circumstances for earnings.}, language = {en} } @techreport{AmorosoHerrmannKritikos2023, type = {Working Paper}, author = {Amoroso, Sara and Herrmann, Benedikt and Kritikos, Alexander}, title = {The Role of Regulation and Regional Government Quality for High Growth Firms}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {71}, issn = {2628-653X}, doi = {10.25932/publishup-61277}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-612771}, pages = {32}, year = {2023}, abstract = {High growth firms (HGFs) are important for job creation and considered to be precursors of economic growth. We investigate how formal institutions, like product- and labor-market regulations, as well as the quality of regional governments that implement these regulations, affect HGF development across European regions. Using data from Eurostat, OECD, WEF, and Gothenburg University, we show that both regulatory stringency and the quality of the regional government influence the regional shares of HGFs. More importantly, we find that the effect of labor- and product-market regulations ultimately depends on the quality of regional governments: in regions with high quality of government, the share of HGFs is neither affected by the level of product market regulation, nor by more or less flexibility in hiring and firing practices. Our findings contribute to the debate on the effects of regulations by showing that regulations are not, per se, "good, bad, and ugly", rather their impact depends on the efficiency of regional governments. Our paper offers important building blocks to develop tailored policy measures that may influence the development of HGFs in a region.}, language = {en} } @article{Kainz2023, author = {Kainz, Fritz}, title = {Extraterritorial Constitutional Rights}, series = {MenschenRechtsMagazin}, volume = {28}, journal = {MenschenRechtsMagazin}, number = {2}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2941-1149}, doi = {10.25932/publishup-60996}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-609962}, pages = {140 -- 150}, year = {2023}, abstract = {Im Laufe der vergangenen Jahrzehnte widmeten Lehre und Rechtsprechung der extraterritorialen Anwendbarkeit von Menschenrechtsabkommen erhebliche Aufmerksamkeit. Im Gegensatz fand die extraterritoriale Anwendung verfassungsgesetzlich verankerter Grundrechte nur in den Vereinigten Staaten vergleichbares akademisches Interesse. Insbesondere l{\"a}sst sich ein Mangel an vergleichender Forschung in diesem Bereich feststellen, was zur herrschenden Meinung beitr{\"a}gt, dass internationale Menschenrechtskonventionen den geeigneten Rahmen bieten, unter dem inl{\"a}ndische Gerichte extraterritoriale Fragen des Verfassungsrechts pr{\"u}fen sollten. Dieser Artikel argumentiert, dass inl{\"a}ndische verfassungsrechtliche Regelungen und die zu ihrer Durchsetzung zust{\"a}ndigen Gerichte ein wichtiges Gegengewicht in der festgefahrenen internationalen Extraterritorialit{\"a}tsdebatte spielen sollten. Anhand zweier Fallstudien aus Deutschland und den Vereinigten Staaten wird gezeigt, dass inl{\"a}ndische Verfassungsgerichte manchmal besser geeignet sind als Vertragsorgane, um die Grundwerte der Menschenw{\"u}rde und der Universalit{\"a}t im extraterritorialen Kontext zu wahren. Dies zeigt sich besonders deutlich am Beispiel Deutschlands, das {\"u}ber eine lange Tradition der Integration in internationale Mehrebenensysteme und des grundrechtliche "Bottom-up"-Widerstands innerhalb solcher Systeme verf{\"u}gt. Aktuelle F{\"a}lle des Bundesverfassungsgerichts zur extraterritorialen Anwendung des Grundgesetzes auf ausl{\"a}ndische nachrichtendienstliche Aktivit{\"a}ten und Klimawandel unterst{\"u}tzen diese Theorie. Allerdings kann ein unabh{\"a}ngiger verfassungsrechtlicher Ansatz auch in solchen nationalen Systemen eigenst{\"a}ndige normative Effekte erzielen, welche st{\"a}rker vom internationalen Menschenrechtssystem isoliert sind. So verwendete auch der amerikanische Oberste Gerichtshof (Supreme Court) die inl{\"a}ndische verfassungsrechtliche Doktrin, um die streng territoriale Auslegung des Internationalen Pakts {\"u}ber b{\"u}rgerliche und politische Rechte durch die amerikanische Regierung zu umgehen und einen funktionalen Ansatz f{\"u}r die extraterritoriale Anwendbarkeit von Grundrechten im Fall der Inhaftierung mutmaßlicher Terroristen im Marinest{\"u}tzpunkt von Guant{\´a}namo Bay zu nutzen. Die Untersuchung dieser Beispiele beansprucht nicht, umfassend oder repr{\"a}sentativ die vielf{\"a}ltigen Verfassungen der Welt und ihre Beziehungen zu v{\"o}lkerrechtlichen Menschenrechtsnormen zu untersuchen. Dennoch sollte die unabh{\"a}ngige Wirkung von verfassungsrechtlichen Rahmenbedingungen in diesen beiden disparaten F{\"a}llen umso mehr Anreiz f{\"u}r eine verst{\"a}rkte vergleichende Forschung zu verfassungsrechtlichen Extraterritorialit{\"a}tsregimen und ihrem Beitrag zum Projekt der Menschenrechte bieten.}, language = {en} } @article{HeisselPietrekKangasetal.2023, author = {Heissel, Andreas and Pietrek, Anou F. and Kangas, Maria and Van der Kaap-Deeder, Jolene and Rapp, Michael Armin}, title = {The Mediating Role of Rumination in the Relation between Basic Psychological Need Frustration and Depressive Symptoms}, series = {Journal of Clinical Medicine}, volume = {12}, journal = {Journal of Clinical Medicine}, edition = {2}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2077-0383}, doi = {10.3390/jcm12020395}, pages = {1 -- 10}, year = {2023}, abstract = {Research within the framework of Basic Psychological Need Theory (BPNT) finds strong associations between basic need frustration and depressive symptoms. This study examined the role of rumination as an underlying mechanism in the association between basic psychological need frustration and depressive symptoms. A cross-sectional sample of N = 221 adults (55.2\% female, mean age = 27.95, range = 18-62, SD = 10.51) completed measures assessing their level of basic psychological need frustration, rumination, and depressive symptoms. Correlational analyses and multiple mediation models were conducted. Brooding partially mediated the relation between need frustration and depressive symptoms. BPNT and Response Styles Theory are compatible and can further advance knowledge about depression vulnerabilities.}, language = {en} } @article{KlempinRehfeldt2023, author = {Klempin, Christiane and Rehfeldt, Daniel}, title = {How to Promote and Measure Reflective Skills in Depth and Breadth of English and Physics Teacher Trainees}, series = {Reflexion in der Lehrkr{\"a}ftebildung: Empirisch - Phasen{\"u}bergreifend - Interdisziplin{\"a}r (Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung ; 4)}, journal = {Reflexion in der Lehrkr{\"a}ftebildung: Empirisch - Phasen{\"u}bergreifend - Interdisziplin{\"a}r (Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung ; 4)}, number = {4}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-566-8}, issn = {2626-3556}, doi = {10.25932/publishup-61938}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-619381}, pages = {115 -- 121}, year = {2023}, abstract = {Supporting reflection in preservice during university-based training is, without doubt, a crucial aspect in attaining teacher professionalism. Therefore, an on-campus seminar designed to relate theory to practice and vice versa - the so-called 'Lehr-Lern-Labor-Seminar (LLLS)' - was implemented over the course of five terms to stimulate reflective skills of English and Physics teacher trainees. Investigations on the effectiveness of three types of the LLLS (no video and two types of video-supported reflections) compared to a parallel group (PG) and a control group (CG) occurred in a mixed methods quasi-experimental study. Reflective skills were elicited with vignettes, relevant covariates with questionnaires. Reflective development was then traced in the dimensions depth and breadth employing a qualitative content analysis. MANCOVA (Multivariate Analysis of Covariance) and regression analyses revealed a substantive increase of reflective depth for English and Physics teacher trainees and breadth development for English LLLS-participants in contrast to both, a PG and a CG, even when controlling for the subjects' individual prerequisites.}, language = {en} } @techreport{KalkuhlFranksGruneretal.2023, type = {Working Paper}, author = {Kalkuhl, Matthias and Franks, Max and Gruner, Friedemann and Lessmann, Kai and Edenhofer, Ottmar}, title = {Pigou's Advice and Sisyphus' Warning}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {62}, issn = {2628-653X}, doi = {10.25932/publishup-57588}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-575882}, pages = {66}, year = {2023}, abstract = {Carbon dioxide removal from the atmosphere is becoming an important option to achieve net zero climate targets. This paper develops a welfare and public economics perspective on optimal policies for carbon removal and storage in non-permanent sinks like forests, soil, oceans, wood products or chemical products. We derive a new metric for the valuation of non-permanent carbon storage, the social cost of carbon removal (SCC-R), which embeds also the conventional social cost of carbon emissions. We show that the contribution of CDR is to create new carbon sinks that should be used to reduce transition costs, even if the stored carbon is released to the atmosphere eventually. Importantly, CDR does not raise the ambition of optimal temperature levels unless initial atmospheric carbon stocks are excessively high. For high initial atmospheric carbon stocks, CDR allows to reduce the optimal temperature below initial levels. Finally, we characterize three different policy regimes that ensure an optimal deployment of carbon removal: downstream carbon pricing, upstream carbon pricing, and carbon storage pricing. The policy regimes differ in their informational and institutional requirements regarding monitoring, liability and financing.}, language = {en} } @techreport{BaganzdeTeresaLinggetal.2023, type = {Working Paper}, author = {Baganz, Melissa and de Teresa, Aurelia G{\´o}mez and Lingg, Rosana T. and Montijo, Yuriditzi Pascacio}, title = {A critical assessment on National Action Plans}, series = {Staat, Recht und Politik - Forschungs- und Diskussionspapiere}, journal = {Staat, Recht und Politik - Forschungs- und Diskussionspapiere}, number = {13}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2509-6974}, doi = {10.25932/publishup-57679}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-576797}, pages = {11}, year = {2023}, abstract = {National Action Plans (NAPs) have been increas-ingly adopted world-wide after the Vienna Dec-laration in 1993, where it was urged to consider the improvement and promotion of Human Rights. In this paper, we discuss their usefulness and success by analysing the challenges present-ed during NAP processes as well as the benefits this set of actions entails: The challenges for their implementation outweigh its actual benefits. Nevertheless, NAPs have great potential. Based on new research, we elaborate a set of recom-mendations for improving the design and imple-mentation of national action planning. In order to effectively bring NAP into practice, we consider it crucial to plan and analyse every state local circumstances in detail. The latter is important, since the implementation of a concrete set of actions is intended to directly transform and improve the local living conditions of the people. In a long-term perspective, we defend the benefit of NAP's implementation for complying obliga-tions set up by HR treaties.}, language = {en} }