@article{TofeldeSchildgenSavietal.2017, author = {Tofelde, Stefanie and Schildgen, Taylor F. and Savi, Sara and Pingel, Heiko and Wickert, Andrew D. and Bookhagen, Bodo and Wittmann, Hella and Alonso, Ricardo N. and Cottle, John and Strecker, Manfred}, title = {100 kyr fluvial cut-and-fill terrace cycles since the Middle Pleistocene in the southern Central Andes, NW Argentina}, series = {Earth \& planetary science letters}, volume = {473}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.06.001}, pages = {141 -- 153}, year = {2017}, abstract = {Fluvial fill terraces in intermontane basins are valuable geomorphic archives that can record tectonically and/or climatically driven changes of the Earth-surface process system. However, often the preservation of fill terrace sequences is incomplete and/or they may form far away from their source areas, complicating the identification of causal links between forcing mechanisms and landscape response, especially over multi-millennial timescales. The intermontane Toro Basin in the southern Central Andes exhibits at least five generations of fluvial terraces that have been sculpted into several-hundred-meter-thick Quaternary valley-fill conglomerates. New surface-exposure dating using nine cosmogenic Be-10 depth profiles reveals the successive abandonment of these terraces with a 100 kyr cyclicity between 75 +/- 7 and 487 +/- 34 ka. Depositional ages of the conglomerates, determined by four Al-26/Be-10 burial samples and U-Pb zircon ages of three intercalated volcanic ash beds, range from 18 +/- 141 to 936 +/- 170 ka, indicating that there were multiple cut-and-fill episodes. Although the initial onset of aggradation at similar to 1 Ma and the overall net incision since ca. 500 ka can be linked to tectonic processes at the narrow basin outlet, the superimposed 100 kyr cycles of aggradation and incision are best explained by eccentricity-driven climate change. Within these cycles, the onset of river incision can be correlated with global cold periods and enhanced humid phases recorded in paleoclimate archives on the adjacent Bolivian Altiplano, whereas deposition occurred mainly during more arid phases on the Altiplano and global interglacial periods. We suggest that enhanced runoff during global cold phases - due to increased regional precipitation rates, reduced evapotranspiration, or both - resulted in an increased sediment-transport capacity in the Toro Basin, which outweighed any possible increases in upstream sediment supply and thus triggered incision. Compared with two nearby basins that record precessional (21-kyr) and long-eccentricity (400-kyr) forcing within sedimentary and geomorphic archives, the recorded cyclicity scales with the square of the drainage basin length. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @misc{CaloHenneEugsteretal.2017, author = {Cal{\`o}, Camilla and Henne, Paul D. and Eugster, Patricia and Leeuwen, Jacqueline van and Gilli, Adrian and Hamann, Yvonne and La Mantia, Tommaso and Pasta, Salvatore and Vescovi, Elisa and Tinner, Willy}, title = {1200 years of decadal-scale variability of Mediterranean vegetation and climate at Pantelleria Island, Italy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403240}, pages = {10}, year = {2017}, abstract = {A new sedimentary sequence from Lago di Venere on Pantelleria Island, located in the Strait of Sicily between Tunisia and Sicily was recovered. The lake is located in the coastal infra-Mediterranean vegetation belt at 2 m a.s.l. Pollen, charcoal and sedimentological analyses are used to explore linkages among vegetation, fire and climate at a decadal scale over the past 1200 years. A dry period from ad 800 to 1000 that corresponds to the Medieval Warm Period' (WMP) is inferred from sedimentological analysis. The high content of carbonate recorded in this period suggests a dry phase, when the ratio of evaporation/precipitation was high. During this period the island was dominated by thermophilous and drought-tolerant taxa, such as Quercus ilex, Olea, Pistacia and Juniperus. A marked shift in the sediment properties is recorded at ad 1000, when carbonate content became very low suggesting wetter conditions until ad 1850-1900. Broadly, this period coincides with the Little Ice Age' (LIA), which was characterized by wetter and colder conditions in Europe. During this time rather mesic conifers (i.e. Pinus pinaster), shrubs and herbs (e.g. Erica arborea and Selaginella denticulata) expanded, whereas more drought-adapted species (e.g. Q. ilex) declined. Charcoal data suggest enhanced fire activity during the LIA probably as a consequence of anthropogenic burning and/or more flammable fuel (e.g. resinous Pinus biomass). The last century was characterized by a shift to high carbonate content, indicating a change towards drier conditions, and re-expansion of Q. ilex and Olea. The post-LIA warming is in agreement with historical documents and meteorological time series. Vegetation dynamics were co-determined by agricultural activities on the island. Anthropogenic indicators (e.g. Cerealia-type, Sporormiella) reveal the importance of crops and grazing on the island. Our pollen data suggest that extensive logging caused the local extinction of deciduous Quercus pubescens around ad1750.}, language = {en} } @article{GuillemoteauLueckTronicke2017, author = {Guillemoteau, Julien and L{\"u}ck, Erika and Tronicke, Jens}, title = {1D inversion of direct current data acquired with a rolling electrode system}, series = {Journal of applied geophysics}, volume = {146}, journal = {Journal of applied geophysics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0926-9851}, doi = {10.1016/j.jappgeo.2017.09.010}, pages = {167 -- 177}, year = {2017}, abstract = {Direct current systems employing a kinematic surveying strategy allow to analyze the electrical resistivity of the subsurface for large areas (i.e., several hectares). Typical applications are found in precision agriculture, archaeological prospecting and soil sciences. With the typical survey setting, the collected data sets are often characterized by a rather high level of noise and a rather coarse lateral sampling compared to data acquired with fixed electrodes. We therefore present an efficient one-dimensional inversion approach in which we put special attention on modeling the effects of noise. We apply this method to data recorded with a five-offset equatorial dipole-dipole system employing rolling electrodes. By performing several synthetic tests with realistic noise levels, we found that the considered five-configuration soundings allow for a reliable imaging of two-layer cases in the uppermost two meters of the subsurface, where the subsurface can be assumed to follow a horizontally layered geometry within 3 m around the system. By analyzing the corresponding sensitivity functions, we also show that the equatorial dipole-dipole array is relatively well suited for a 1D inversion approach compared to standard in-line electrode arrays. To illustrate this aspect, we show that our method can provide results similar to those obtained with a 2D Wenner imaging procedure for data recorded across a well-constrained 2D target. We finally apply our method to a large five-offset data set acquired in an agricultural study. The final pseudo-3D model of electrical resistivity is in accordance with borehole data available for the surveyed area. Our results demonstrate the applicability and the versatility of the presented inversion approach for large-scale data sets as they are typically collected with such rolling electrode systems. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{SpekkersRoezerThiekenetal.2017, author = {Spekkers, Matthieu and Roezer, Viktor and Thieken, Annegret and ten Veldhuis, Marie-Claire and Kreibich, Heidi}, title = {A comparative survey of the impacts of extreme rainfall in two international case studies}, series = {Natural hazards and earth system sciences}, volume = {17}, journal = {Natural hazards and earth system sciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-17-1337-2017}, pages = {1337 -- 1355}, year = {2017}, language = {en} } @article{BoersGoswamiGhil2017, author = {Boers, Niklas and Goswami, Bedartha and Ghil, Michael}, title = {A complete representation of uncertainties in layer-counted paleoclimatic archives}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {13}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-13-1169-2017}, pages = {12}, year = {2017}, abstract = {Accurate time series representation of paleoclimatic proxy records is challenging because such records involve dating errors in addition to proxy measurement errors. Rigorous attention is rarely given to age uncertainties in paleoclimatic research, although the latter can severely bias the results of proxy record analysis. Here, we introduce a Bayesian approach to represent layer-counted proxy records - such as ice cores, sediments, corals, or tree rings - as sequences of probability distributions on absolute, error-free time axes. The method accounts for both proxy measurement errors and uncertainties arising from layer-counting-based dating of the records. An application to oxygen isotope ratios from the North Greenland Ice Core Project (NGRIP) record reveals that the counting errors, although seemingly small, lead to substantial uncertainties in the final representation of the oxygen isotope ratios. In particular, for the older parts of the NGRIP record, our results show that the total uncertainty originating from dating errors has been seriously underestimated. Our method is next applied to deriving the overall uncertainties of the Suigetsu radiocarbon comparison curve, which was recently obtained from varved sediment cores at Lake Suigetsu, Japan. This curve provides the only terrestrial radiocarbon comparison for the time interval 12.5-52.8 kyr BP. The uncertainties derived here can be readily employed to obtain complete error estimates for arbitrary radiometrically dated proxy records of this recent part of the last glacial interval.}, language = {en} } @article{LotzeCampenVerburgPoppetal.2017, author = {Lotze-Campen, Hermann and Verburg, Peter H. and Popp, Alexander and Lindner, Marcus and Verkerk, Pieter J. and Moiseyev, Alexander and Schrammeijer, Elizabeth and Helming, John and Tabeau, Andrzej and Schulp, Catharina J. E. and van der Zanden, Emma H. and Lavalle, Carlo and Batista e Silva, Filipe and Walz, Ariane and Bodirsky, Benjamin Leon}, title = {A cross-scale impact assessment of European nature protection policies under contrasting future socio-economic pathways}, series = {Regional environmental change}, volume = {18}, journal = {Regional environmental change}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-017-1167-8}, pages = {751 -- 762}, year = {2017}, abstract = {Protection of natural or semi-natural ecosystems is an important part of societal strategies for maintaining biodiversity, ecosystem services, and achieving overall sustainable development. The assessment of multiple emerging land use trade-offs is complicated by the fact that land use changes occur and have consequences at local, regional, and even global scale. Outcomes also depend on the underlying socio-economic trends. We apply a coupled, multi-scale modelling system to assess an increase in nature protection areas as a key policy option in the European Union (EU). The main goal of the analysis is to understand the interactions between policy-induced land use changes across different scales and sectors under two contrasting future socio-economic pathways. We demonstrate how complementary insights into land system change can be gained by coupling land use models for agriculture, forestry, and urban areas for Europe, in connection with other world regions. The simulated policy case of nature protection shows how the allocation of a certain share of total available land to newly protected areas, with specific management restrictions imposed, may have a range of impacts on different land-based sectors until the year 2040. Agricultural land in Europe is slightly reduced, which is partly compensated for by higher management intensity. As a consequence of higher costs, total calorie supply per capita is reduced within the EU. While wood harvest is projected to decrease, carbon sequestration rates increase in European forests. At the same time, imports of industrial roundwood from other world regions are expected to increase. Some of the aggregate effects of nature protection have very different implications at the local to regional scale in different parts of Europe. Due to nature protection measures, agricultural production is shifted from more productive land in Europe to on average less productive land in other parts of the world. This increases, at the global level, the allocation of land resources for agriculture, leading to a decrease in tropical forest areas, reduced carbon stocks, and higher greenhouse gas emissions outside of Europe. The integrated modelling framework provides a method to assess the land use effects of a single policy option while accounting for the trade-offs between locations, and between regional, European, and global scales.}, language = {en} } @article{RachKahmenBraueretal.2017, author = {Rach, Oliver and Kahmen, Ansgar and Brauer, Achim and Sachse, Dirk}, title = {A dual-biomarker approach for quantification of changes in relative humidity from sedimentary lipid D/H ratios}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {13}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-13-741-2017}, pages = {741 -- 757}, year = {2017}, abstract = {Past climatic change can be reconstructed from sedimentary archives by a number of proxies. However, few methods exist to directly estimate hydrological changes and even fewer result in quantitative data, impeding our understanding of the timing, magnitude and mechanisms of hydrological changes. Here we present a novel approach based on delta H-2 values of sedimentary lipid biomarkers in combination with plant physiological modeling to extract quantitative information on past changes in relative humidity. Our initial application to an annually laminated lacustrine sediment sequence from western Europe deposited during the Younger Dryas cold period revealed relative humidity changes of up to 15\% over sub-centennial timescales, leading to major ecosystem changes, in agreement with palynological data from the region. We show that by combining organic geochemical methods and mechanistic plant physiological models on well characterized lacustrine archives it is possible to extract quantitative ecohydrological parameters from sedimentary lipid biomarker delta H-2 data.}, language = {en} } @article{NordBoudevillainBerneetal.2017, author = {Nord, Guillaume and Boudevillain, Brice and Berne, Alexis and Branger, Flora and Braud, Isabelle and Dramais, Guillaume and Gerard, Simon and Le Coz, Jerome and Legout, Cedric and Molinie, Gilles and Van Baelen, Joel and Vandervaere, Jean-Pierre and Andrieu, Julien and Aubert, Coralie and Calianno, Martin and Delrieu, Guy and Grazioli, Jacopo and Hachani, Sahar and Horner, Ivan and Huza, Jessica and Le Boursicaud, Raphael and Raupach, Timothy H. and Teuling, Adriaan J. and Uber, Magdalena and Vincendon, Beatrice and Wijbrans, Annette}, title = {A high space-time resolution dataset linking meteorological forcing and hydro-sedimentary response in a mesoscale Mediterranean catchment (Auzon) of the Ardeche region, France}, series = {Earth System Science Data}, volume = {9}, journal = {Earth System Science Data}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1866-3508}, doi = {10.5194/essd-9-221-2017}, pages = {29}, year = {2017}, abstract = {A comprehensive hydrometeorological dataset is presented spanning the period 1 January 201131 December 2014 to improve the understanding of the hydrological processes leading to flash floods and the relation between rainfall, runoff, erosion and sediment transport in a mesoscale catchment (Auzon, 116 km(2)) of the Mediterranean region. Badlands are present in the Auzon catchment and well connected to high-gradient channels of bedrock rivers which promotes the transfer of suspended solids downstream. The number of observed variables, the various sensors involved (both in situ and remote) and the space-time resolution (similar to km(2), similar to min) of this comprehensive dataset make it a unique contribution to research communities focused on hydrometeorology, surface hydrology and erosion. Given that rainfall is highly variable in space and time in this region, the observation system enables assessment of the hydrological response to rainfall fields. Indeed, (i) rainfall data are provided by rain gauges (both a research network of 21 rain gauges with a 5 min time step and an operational network of 10 rain gauges with a 5 min or 1 h time step), S-band Doppler dual-polarization radars (1 km(2), 5 min resolution), disdrometers (16 sensors working at 30 s or 1 min time step) and Micro Rain Radars (5 sensors, 100m height resolution). Additionally, during the special observation period (SOP-1) of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, two X-band radars provided precipitation measurements at very fine spatial and temporal scales (1 ha, 5 min). (ii) Other meteorological data are taken from the operational surface weather observation stations of Meteo-France (including 2m air temperature, atmospheric pressure, 2 m relative humidity, 10m wind speed and direction, global radiation) at the hourly time resolution (six stations in the region of interest). (iii) The monitoring of surface hydrology and suspended sediment is multi-scale and based on nested catchments. Three hydrometric stations estimate water discharge at a 2-10 min time resolution. Two of these stations also measure additional physico-chemical variables (turbidity, temperature, conductivity) and water samples are collected automatically during floods, allowing further geochemical characterization of water and suspended solids. Two experimental plots monitor overland flow and erosion at 1 min time resolution on a hillslope with vineyard. A network of 11 sensors installed in the intermittent hydrographic network continuously measures water level and water temperature in headwater subcatchments (from 0.17 to 116 km(2)) at a time resolution of 2-5 min. A network of soil moisture sensors enables the continuous measurement of soil volumetric water content at 20 min time resolution at 9 sites. Additionally, concomitant observations (soil moisture measurements and stream gauging) were performed during floods between 2012 and 2014. Finally, this dataset is considered appropriate for understanding the rainfall variability in time and space at fine scales, improving areal rainfall estimations and progressing in distributed hydrological and erosion modelling.}, language = {en} } @article{BartholdTurnerElsenbeeretal.2017, author = {Barthold, Frauke Katrin and Turner, Benjamin L. and Elsenbeer, Helmut and Zimmermann, Alexander}, title = {A hydrochemical approach to quantify the role of return flow in a surface flow-dominated catchment}, series = {Hydrological processes}, volume = {31}, journal = {Hydrological processes}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.11083}, pages = {1018 -- 1033}, year = {2017}, abstract = {Stormflow generation in headwater catchments dominated by subsurface flow has been studied extensively, yet catchments dominated by surface flow have received less attention. We addressed this by testing whether stormflow chemistry is controlled by either (a) the event-water signature of overland flow, or (b) the pre-event water signature of return flow. We used a high-resolution hydrochemical data set of stormflow and end-members of multiple storms in an end-member mixing analysis to determine the number of end-members needed to explain stormflow, characterize and identify potential end-members, calculate their contributions to stormflow, and develop a conceptual model of stormflow. The arrangement and relative positioning of end-members in stormflow mixing space suggest that saturation excess overland flow (26-48\%) and return flow from two different subsurface storage pools (17-53\%) are both similarly important for stormflow. These results suggest that pipes and fractures are important flow paths to rapidly release stored water and highlight the value of within-event resolution hydrochemical data to assess the full range and dynamics of flow paths.}, language = {en} } @article{JonesArpWhitmanetal.2017, author = {Jones, Benjamin M. and Arp, Christopher D. and Whitman, Matthew S. and Nigro, Debora and Nitze, Ingmar and Beaver, John and Gadeke, Anne and Zuck, Callie and Liljedahl, Anna and Daanen, Ronald and Torvinen, Eric and Fritz, Stacey and Grosse, Guido}, title = {A lake-centric geospatial database to guide research and inform management decisions in an Arctic watershed in northern Alaska experiencing climate and land-use changes}, series = {AMBIO}, volume = {46}, journal = {AMBIO}, publisher = {Springer}, address = {Dordrecht}, issn = {0044-7447}, doi = {10.1007/s13280-017-0915-9}, pages = {769 -- 786}, year = {2017}, abstract = {Lakes are dominant and diverse landscape features in the Arctic, but conventional land cover classification schemes typically map them as a single uniform class. Here, we present a detailed lake-centric geospatial database for an Arctic watershed in northern Alaska. We developed a GIS dataset consisting of 4362 lakes that provides information on lake morphometry, hydrologic connectivity, surface area dynamics, surrounding terrestrial ecotypes, and other important conditions describing Arctic lakes. Analyzing the geospatial database relative to fish and bird survey data shows relations to lake depth and hydrologic connectivity, which are being used to guide research and aid in the management of aquatic resources in the National Petroleum Reserve in Alaska. Further development of similar geospatial databases is needed to better understand and plan for the impacts of ongoing climate and land-use changes occurring across lake-rich landscapes in the Arctic.}, language = {en} } @article{AramayoGuzmanHongnetal.2017, author = {Aramayo, Alejandro and Guzman, Silvina and Hongn, Fernando D. and del Papa, Cecilia and Montero-Lopez, Carolina and Sudo, Masafumi}, title = {A Middle Miocene (13.5-12 Ma) deformational event constrained by volcanism along the Puna-Eastern Cordillera border, NW Argentina}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {703}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2017.02.018}, pages = {9 -- 22}, year = {2017}, abstract = {The features of Middle Miocene deposits in the Puna-Eastern Cordillera transition (Valles Calchaquies) indicate that Cenozoic deformation, sedimentation and volcanism follow a complex spatiotemporal relationship. The intense volcanic activity recorded in the eastern Puna border between 14 and 11.5 Ma coincides with the occurrence of one of the most important deformation events of the Neogene tectonic evolution in the region. Studies performed across the Puna-Eastern Cordillera transition show different relationships between volcanic deposits of ca. 13.5-12.1 Ma and the Oligocene-Miocene Angastaco Formation. In this paper we describe the ash-flow tuff deposits which are the first of this type found concordant in the sedimentary fill of Valles Calchaquies. Several analyses performed on these pyroclastic deposits allow a correlation to be made with the Alto de Las Lagunas Ignimbrite (ca. 13.5 Ma) of the Pucarilla-Cerro Tipillas Volcanic Complex located in the Puna. Outcrops of the ca. 13.5 Ma pyroclastic deposits are recognised within the Puna and the Valle Calchaqui. However, in the southern prolongation of the Valle de Hualfin (Tiopampa-Pucarilla depression) that separates the Puna from the Valle Calchaqui at these latitudes, these deposits are partially eroded and buried, and thus their occurrence is recorded only by abundant volcanic clasts included in conglomerates of the Angastaco Formation. The sedimentation of the Angastaco Formation was aborted at ca. 12 Ma in the Tiopampa-Pucarilla depression by the Pucarilla Ignimbrite, which unconformably covers the synorogenic units. On the contrary, in the Valle Calchaqui the sedimentation of the Angastaco Formation continued until the Late Miocene. The different relationships between the Miocene Angastaco Formation and the ignimbrites with ages of ca. 13.5 and ca. 12 Ma reveal that in this short period (-1.5 m.y.) a significant deformation event took place and resulted in marked palaeogeographic changes, as evidenced by stratigraphic-sedimentological and chronological records in the Angastaco Formation. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @phdthesis{Horn2017, author = {Horn, Juliane}, title = {A modelling framework for exploration of a multidimensional factor causing decline in honeybee health}, school = {Universit{\"a}t Potsdam}, pages = {221}, year = {2017}, language = {en} } @article{MolnosMamdouhPetrietal.2017, author = {Molnos, Sonja and Mamdouh, Tarek and Petri, Stefan and Nocke, Thomas and Weinkauf, Tino and Coumou, Dim}, title = {A network-based detection scheme for the jet stream core}, series = {Earth system dynamics}, volume = {8}, journal = {Earth system dynamics}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2190-4979}, doi = {10.5194/esd-8-75-2017}, pages = {75 -- 89}, year = {2017}, abstract = {The polar and subtropical jet streams are strong upper-level winds with a crucial influence on weather throughout the Northern Hemisphere midlatitudes. In particular, the polar jet is located between cold arctic air to the north and warmer subtropical air to the south. Strongly meandering states therefore often lead to extreme surface weather. The parameter values of the detection scheme are optimized using simulated annealing and a skill function that accounts for the zonal-mean jet stream position (Rikus, 2015). After the successful optimization process, we apply our scheme to reanalysis data covering 1979-2015 and calculate seasonal-mean probabilistic maps and trends in wind strength and position of jet streams. We present longitudinally defined probability distributions of the positions for both jets for all on the Northern Hemisphere seasons. This shows that winter is characterized by two well-separated jets over Europe and Asia (ca. 20 degrees W to 140 degrees E). In contrast, summer normally has a single merged jet over the western hemisphere but can have both merged and separated jet states in the eastern hemisphere.}, language = {en} } @article{HoffmannSchulzHankeAlbaetal.2017, author = {Hoffmann, Mathias and Schulz-Hanke, Maximilian and Alba, Juana Garcia and Jurisch, Nicole and Hagemann, Ulrike and Sachs, Torsten and Sommer, Michael and Augustin, J{\"u}rgen}, title = {A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition- and diffusion-derived components}, series = {Atmospheric measurement techniques : an interactive open access journal of the European Geosciences Union}, volume = {10}, journal = {Atmospheric measurement techniques : an interactive open access journal of the European Geosciences Union}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1867-1381}, doi = {10.5194/amt-10-109-2017}, pages = {109 -- 118}, year = {2017}, abstract = {Processes driving the production, transformation and transport of methane (CH4 / in wetland ecosystems are highly complex. We present a simple calculation algorithm to separate open-water CH4 fluxes measured with automatic chambers into diffusion-and ebullition-derived components. This helps to reveal underlying dynamics, to identify potential environmental drivers and, thus, to calculate reliable CH4 emission estimates. The flux separation is based on identification of ebullition-related sudden concentration changes during single measurements. Therefore, a variable ebullition filter is applied, using the lower and upper quartile and the interquartile range (IQR). Automation of data processing is achieved by using an established R script, adjusted for the purpose of CH4 flux calculation. The algorithm was validated by performing a laboratory experiment and tested using flux measurement data (July to September 2013) from a former fen grassland site, which converted into a shallow lake as a result of rewetting. Ebullition and diffusion contributed equally (46 and 55 \%) to total CH4 emissions, which is comparable to ratios given in the literature. Moreover, the separation algorithm revealed a concealed shift in the diurnal trend of diffusive fluxes throughout the measurement period. The water temperature gradient was identified as one of the major drivers of diffusive CH4 emissions, whereas no significant driver was found in the case of erratic CH4 ebullition events.}, language = {en} } @article{PradhanCostaRybskietal.2017, author = {Pradhan, Prajal and Costa, Lu{\´i}s F{\´i}l{\´i}pe Carvalho da and Rybski, Diego and Lucht, Wolfgang and Kropp, J{\"u}rgen}, title = {A Systematic Study of Sustainable Development Goal (SDG) Interactions}, series = {Earths Future}, volume = {5}, journal = {Earths Future}, publisher = {Wiley}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1002/2017EF000632}, pages = {1169 -- 1179}, year = {2017}, abstract = {Sustainable development goals (SDGs) have set the 2030 agenda to transform our world by tackling multiple challenges humankind is facing to ensure well-being, economic prosperity, and environmental protection. In contrast to conventional development agendas focusing on a restricted set of dimensions, the SDGs provide a holistic and multidimensional view on development. Hence, interactions among the SDGs may cause diverging results. To analyze the SDG interactions we systematize the identification of synergies and trade-offs using official SDG indicator data for 227 countries. A significant positive correlation between a pair of SDG indicators is classified as a synergy while a significant negative correlation is classified as a trade-off. We rank synergies and trade-offs between SDGs pairs on global and country scales in order to identify the most frequent SDG interactions. For a given SDG, positive correlations between indicator pairs were found to outweigh the negative ones in most countries. Among SDGs the positive and negative correlations between indicator pairs allowed for the identification of particular global patterns. SDG 1 (No poverty) has synergetic relationship with most of the other goals, whereas SDG 12 (Responsible consumption and production) is the goal most commonly associated with trade-offs. The attainment of the SDG agenda will greatly depend on whether the identified synergies among the goals can be leveraged. In addition, the highlighted trade-offs, which constitute obstacles in achieving the SDGs, need to be negotiated and made structurally nonobstructive by deeper changes in the current strategies.}, language = {en} } @article{CampfortsSchwanghartGovers2017, author = {Campforts, Benjamin and Schwanghart, Wolfgang and Govers, Gerard}, title = {Accurate simulation of transient landscape evolution by eliminating numerical diffusion}, series = {Earth surface dynamics}, volume = {5}, journal = {Earth surface dynamics}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-5-47-2017}, pages = {47 -- 66}, year = {2017}, abstract = {Landscape evolution models (LEMs) allow the study of earth surface responses to changing climatic and tectonic forcings. While much effort has been devoted to the development of LEMs that simulate a wide range of processes, the numerical accuracy of these models has received less attention. Most LEMs use first-order accurate numerical methods that suffer from substantial numerical diffusion. Numerical diffusion particularly affects the solution of the advection equation and thus the simulation of retreating landforms such as cliffs and river knickpoints. This has potential consequences for the integrated response of the simulated landscape. Here we test a higher-order flux-limiting finite volume method that is total variation diminishing (TVD-FVM) to solve the partial differential equations of river incision and tectonic displacement. We show that using the TVD-FVM to simulate river incision significantly influences the evolution of simulated landscapes and the spatial and temporal variability of catchment-wide erosion rates. Furthermore, a two-dimensional TVD-FVM accurately simulates the evolution of landscapes affected by lateral tectonic displacement, a process whose simulation was hitherto largely limited to LEMs with flexible spatial discretization. We implement the scheme in TTLEM (TopoToolbox Landscape Evolution Model), a spatially explicit, raster-based LEM for the study of fluvially eroding landscapes in TopoToolbox 2.}, language = {en} } @article{KueblerStreichLuecketal.2017, author = {K{\"u}bler, Simon and Streich, R. and L{\"u}ck, Erika and Hoffmann, M. and Friedrich, A. M. and Strecker, Manfred}, title = {Active faulting in a populated low-strain setting (Lower Rhine Graben, Central Europe) identified by geomorphic, geophysical and geological analysis}, series = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, volume = {432}, journal = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, publisher = {The Geological Society}, address = {London}, isbn = {978-1-86239-745-3}, issn = {0305-8719}, doi = {10.1144/SP432.11}, pages = {127 -- 146}, year = {2017}, abstract = {The Lower Rhine Graben (Central Europe) is a prime example of a seismically active low-strain rift zone characterized by pronounced anthropogenic and climatic overprint of structures, and long recurrence intervals of large earthquakes. These factors render the identification of active faults and surface ruptures difficult. We investigated two fault scarps in the Lower Rhine Graben, to decipher their structural character, offset and potential seismogenic origin. Both scarps were modified by anthropogenic activity. The Hemmerich site lies c. 20 km SW of Cologne, along the Erft Fault. The Untermaubach site lies SW of Duren, where the Schafberg Fault projects into the Rur River valley. At the Hemmerich site, geomorphic and geophysical data, as well as exploratory coring reveal evidence of repeated normal faulting. Geophysical analysis and palaeoseismological excavation at the Untermaubach site reveal a complex fault zone in Holocene gravels characterized by subtle gravel deformation. Differentiation of tectonic and fluvial features was only possible with trenching, because fault structures and grain sizes of the sediments were below the resolution of the geophysical data. Despite these issues, our investigation demonstrates that valuable insight into past earthquakes and seismogenic deformation in a low-strain environment can be revealed using a multidisciplinary approach.}, language = {en} } @article{LandgrafKueblerHintersbergeretal.2017, author = {Landgraf, Angela and K{\"u}bler, Simon and Hintersberger, Esther and Stein, Seth}, title = {Active tectonics, earthquakes and palaeoseismicity in slowly deforming continents}, series = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, volume = {432}, journal = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, number = {1}, publisher = {The Geological Society}, address = {London}, isbn = {978-1-86239-745-3}, issn = {0305-8719}, doi = {10.1144/SP432.13}, pages = {1 -- 12}, year = {2017}, language = {en} } @article{KreibichDiBaldassarreVorogushynetal.2017, author = {Kreibich, Heidi and Di Baldassarre, Giuliano and Vorogushyn, Sergiy and Aerts, Jeroen C. J. H. and Apel, Heiko and Aronica, Giuseppe T. and Arnbjerg-Nielsen, Karsten and Bouwer, Laurens M. and Bubeck, Philip and Caloiero, Tommaso and Chinh, Do T. and Cortes, Maria and Gain, Animesh K. and Giampa, Vincenzo and Kuhlicke, Christian and Kundzewicz, Zbigniew W. and Llasat, Maria Carmen and Mard, Johanna and Matczak, Piotr and Mazzoleni, Maurizio and Molinari, Daniela and Dung, Nguyen V. and Petrucci, Olga and Schr{\"o}ter, Kai and Slager, Kymo and Thieken, Annegret and Ward, Philip J. and Merz, Bruno}, title = {Adaptation to flood risk}, series = {Earth's Future}, volume = {5}, journal = {Earth's Future}, publisher = {Wiley}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1002/2017EF000606}, pages = {953 -- 965}, year = {2017}, abstract = {As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in the same region, with the second flood causing significantly lower damage. These success stories of risk reduction were selected across different socioeconomic and hydro-climatic contexts. The potential of societies to adapt is uncovered by describing triggered societal changes, as well as formal measures and spontaneous processes that reduced flood risk. This novel approach has the potential to build the basis for an international data collection and analysis effort to better understand and attribute changes in risk due to hydrological extremes in the framework of the IAHSs Panta Rhei initiative. Across all case studies, we find that lower damage caused by the second event was mainly due to significant reductions in vulnerability, for example, via raised risk awareness, preparedness, and improvements of organizational emergency management. Thus, vulnerability reduction plays an essential role for successful adaptation. Our work shows that there is a high potential to adapt, but there remains the challenge to stimulate measures that reduce vulnerability and risk in periods in which extreme events do not occur.}, language = {en} } @article{OwenSmithAshwalSudoetal.2017, author = {Owen-Smith, T. M. and Ashwal, L. D. and Sudo, Masafumi and Trumbull, Robert B.}, title = {Age and Petrogenesis of the Doros Complex, Namibia, and Implications for Early Plume-derived Melts in the Parana-Etendeka LIP}, series = {Journal of petrology}, volume = {58}, journal = {Journal of petrology}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-3530}, doi = {10.1093/petrology/egx021}, pages = {423 -- 442}, year = {2017}, abstract = {The early Cretaceous Paran{\´a}-Etendeka Large Igneous Province is attributed to the impact of the Tristan mantle plume on the base of the continental lithosphere and the associated opening of the South Atlantic Ocean during the breakup of West Gondwana. Although the geochemistry of the Paran{\´a} and Etendeka volcanic rocks has been extensively studied, there is still disagreement on the role of the mantle plume in the production of the magma types observed, because some of their primary compositions are obscured by continental crustal contamination. However, there are related plutonic rocks that preserve mantle signatures. The Doros Complex is a shallow-level mafic intrusion within the Etendeka Province of Namibia. New 39Ar/40Ar step-heating ages for Doros gabbros from this study (weighted mean of 130 ± 1 Ma; 2σ error) confirm contemporaneity with the Paran{\´a}-Etendeka magmatic event. The Doros suite yields mean ɛNd values of +5·3 ± 1·0 (1σ; n = 11), initial 87Sr/86Sr = 0·70418 ± 0·00017 (n = 11) and 206Pb/204Pb = 18·11 ± 0·06 (n = 13) at 132 Ma. The clustering of isotopic data and trends in incompatible trace element ratios indicate that all the magmas in the complex were derived from the same mantle source components, during the same melting episode. By quantitative isotopic modelling of mixing processes, we constrain the Doros parental magma to comprise 60-80\% melt of a depleted asthenospheric mantle component and 20-40\% melt of a more enriched, Tristan plume-derived, asthenospheric component. No lithospheric mantle component is required to explain the Doros magma compositions. The chilled margin to the complex is the only rock type that shows evidence of significant continental crustal contamination, by assimilation of the metasedimentary host-rock upon emplacement. The identification of a substantial Tristan plume component in the Doros source confirms the integral role of the deep-seated thermal anomaly in Paran{\´a}-Etendeka magmatism. We show, in addition, that the Doros suite has consistent, strong geochemical affinities with the Tafelkop group 'ferropicrite' lavas of the Etendeka Province. This provides crucial evidence in support of Doros as the eruptive site for the Tafelkop lavas, thereby linking the Doros magmatism to the earliest eruptive phase in the Etendeka event. The distinctive chemistry of this magma group has been attributed to relatively deep decompression melting of pyroxenite-bearing material in the heterogeneous Tristan plume head, related to the initial impact of the plume on the base of the lithosphere.}, language = {en} } @article{AbouserieZehbeMetzneretal.2017, author = {Abouserie, Ahed and Zehbe, Kerstin and Metzner, Philipp and Kelling, Alexandra and G{\"u}nter, Christina and Schilde, Uwe and Strauch, Peter and K{\"o}rzd{\"o}rfer, Thomas and Taubert, Andreas}, title = {Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201700826}, pages = {5640 -- 5649}, year = {2017}, abstract = {Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry.}, language = {en} } @article{AbouserieZehbeMetzneretal.2017, author = {Abouserie, Ahed and Zehbe, Kerstin and Metzner, Philipp and Kelling, Alexandra and G{\"u}nter, Christina and Schilde, Uwe and Strauch, Peter and K{\"o}rzd{\"o}rfer, Thomas and Taubert, Andreas}, title = {Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201700826}, pages = {5640 -- 5649}, year = {2017}, abstract = {Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry.}, language = {en} } @article{SocquetValdesJaraetal.2017, author = {Socquet, Anne and Valdes, Jesus Pina and Jara, Jorge and Cotton, Fabrice Pierre and Walpersdorf, Andrea and Cotte, Nathalie and von Specht, Sebastian and Ortega-Culaciati, Francisco and Carrizo, Daniel and Norabuena, Edmundo}, title = {An 8month slow slip event triggers progressive nucleation of the 2014 Chile megathrust}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2017GL073023}, pages = {4046 -- 4053}, year = {2017}, abstract = {The mechanisms leading to large earthquakes are poorly understood and documented. Here we characterize the long-term precursory phase of the 1 April 2014 M(w)8.1 North Chile megathrust. We show that a group of coastal GPS stations accelerated westward 8months before the main shock, corresponding to a M(w)6.5 slow slip event on the subduction interface, 80\% of which was aseismic. Concurrent interface foreshocks underwent a diminution of their radiation at high frequency, as shown by the temporal evolution of Fourier spectra and residuals with respect to ground motions predicted by recent subduction models. Such ground motions change suggests that in response to the slow sliding of the subduction interface, seismic ruptures are progressively becoming smoother and/or slower. The gradual propagation of seismic ruptures beyond seismic asperities into surrounding metastable areas could explain these observations and might be the precursory mechanism eventually leading to the main shock.}, language = {en} } @article{PickKorte2017, author = {Pick, Leonie and Korte, Monika}, title = {An annual proxy for the geomagnetic signal of magnetospheric currents on Earth based on observatory data from 1900-2010}, series = {Geophysical Journal International}, volume = {211}, journal = {Geophysical Journal International}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1365-246X}, doi = {10.1093/gji/ggx367}, pages = {1223 -- 1236}, year = {2017}, abstract = {We introduce the Annual Magnetospheric Currents index as long-term proxy for the geomagnetic signal of magnetospheric currents on Earth valid within the time span 1900-2010. Similar to the widely used disturbance storm time and 'Ring Current' indices, it is based on geomagnetic observatory data, but provides a realistic absolute level and uncertainty estimates. Crucial aspects to this end are the revision of observatory crustal biases as well as the implementation of a Bayesian inversion accounting for uncertainties in the main field estimate, both required for the index derivation. The observatory choice is based on a minimization of index variance during a reference period spanning 1960-2010. The new index is capable of correcting observatory time series from large-scale external signals in a user-friendly manner. At present the index is only available as annual mean values. An extension to hourly values for the same time span is in progress.}, language = {en} } @article{NeelyBookhagenBurbank2017, author = {Neely, Alexander B. and Bookhagen, Bodo and Burbank, Douglas W.}, title = {An automated knickzone selection algorithm (KZ-Picker) to analyze transient landscapes: Calibration and validation}, series = {Journal of geophysical research : Earth surface}, volume = {122}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2017JF004250}, pages = {1236 -- 1261}, year = {2017}, abstract = {Streams commonly respond to base-level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to migrate upstream. Such migrating knickzones dictate the pace of landscape response to changes in tectonics or erosional efficiency and can help quantify the timing and source of base-level fall. Identification of knickzones typically requires individual selection of steepened reaches: a process that is tedious and subjective and has no efficient means to measure knickzone size. We construct an algorithm to automate this procedure by selecting the bounds of knickzone reaches in a -space (drainage-area normalized) framework. An automated feature calibrates algorithm parameters to a subset of knickzones handpicked by the user. The algorithm uses these parameters as consistent criteria to identify knickzones objectively, and then the algorithm measures the height, length, and slope of each knickzone reach. We test the algorithm on 1, 10, and 30m resolution digital elevation models (DEMs) of six catchments (trunk-stream lengths: 2.1-5.4km) on Santa Cruz Island, southern California. On the 1m DEM, algorithm-selected knickzones confirm 93\% of handpicked knickzone positions (n=178) to a spatial accuracy of 100m, 88\% to an accuracy within 50m, and 46\% to an accuracy within 10m. Using 10 and 30m DEMs, accuracy is similar: 88-86\% to 100m and 82\% to 50m (n=38 and 36, respectively). The algorithm enables efficient regional comparison of the size and location of knickzones with geologic structures, mapped landforms, and hillslope morphology, thereby facilitating approaches to characterize the dynamics of transient landscapes. Plain Language Summary The shape of rivers reflects the environments that they flow through and the environments that they link together: mountains and oceans. Anywhere along the length of a river, changes in environmental conditions are propagated upstream and downstream as the river changes its morphology to match the new environmental conditions. Commonly, rivers steepen as land uplifts faster in regions of high tectonic convergence. The steepening of river gradients is propagated upstream and can be mapped to trace zones of high tectonic activity across landscapes and estimate the source and timing of environmental change. Such insights may indicate regions where earthquakes have become more frequent in the recent past and how rivers respond to these changes. In this submission, we detail an algorithm that can use digital topographic data (similar to google earth), to automatically map and measure anomalously steep river reaches across continental scales. This technology can highlight areas that have experienced recent sustained changes in environmental conditions, evident by changes in the morphology of rivers. Such environmental conditions could be changes in tectonic uplift and earthquake activity, changes in sea level, changes in land-use, or changes in climate, all factors that can produce measurable differences in river morphology over time.}, language = {en} } @article{PokornyKrmicekSudo2017, author = {Pokorny, Richard and Krmicek, Lukas and Sudo, Masafumi}, title = {An endemic ichnoassemblage from a late Miocene paleolake in SE Iceland}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {485}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2017.07.033}, pages = {761 -- 773}, year = {2017}, abstract = {In Porisdalur valley, a small relict of a sedimentary body was identified in southeastern Iceland. It probably represents a remnant of the deep, tectonically arranged paleolake (Late Miocene, 8-9 Ma), and filled by volcaniclastic material from nearby, active volcanic centers. In the profile of tuffitic sandstone, siltstone and claystone, the ripple-bedding layers, molds and flute casts indicate periodic mass flow episodes. In the sedimentary profile, the characteristic arrangement of sediments is evident, showing features of the Bouma sequences. In the claystone layers, deposited during episodes of lowest kinetic energy, a specific ichnoassemblage was found, represented by Thorichnus ramosus igen. et isp. nov., T. corniculatus igen. et isp. nov., Mammillichnis jakubi isp. nov., Helminthoidichnites multilaqueatus comb. nov., Vamaspor jachymi igen. et isp. nov. and five preliminarily identified trace fossils. The assemblage belongs to Mermia ichnofacies, the nonmarine representative of an ichnofacies, developed in a turbiditic environment; most of identified trace fossils are so far endemic. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{MilewskiChabrillatBehling2017, author = {Milewski, Robert and Chabrillat, Sabine and Behling, Robert}, title = {Analyses of Recent Sediment Surface Dynamic of a Namibian Kalahari Salt Pan Based on Multitemporal Landsat and Hyperspectral Hyperion Data}, series = {Remote Sensing}, volume = {9}, journal = {Remote Sensing}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs9020170}, pages = {24}, year = {2017}, abstract = {This study combines spaceborne multitemporal and hyperspectral data to analyze the spatial distribution of surface evaporite minerals and changes in a semi-arid depositional environment associated with episodic flooding events, the Omongwa salt pan (Kalahari, Namibia). The dynamic of the surface crust is evaluated by a change-detection approach using the Iterative-reweighted Multivariate Alteration Detection (IR-MAD) based on the Landsat archive imagery from 1984 to 2015. The results show that the salt pan is a highly dynamic and heterogeneous landform. A change gradient is observed from very stable pan border to a highly dynamic central pan. On the basis of hyperspectral EO-1 Hyperion images, the current distribution of surface evaporite minerals is characterized using Spectral Mixture Analysis (SMA). Assessment of field and image endmembers revealed that the pan surface can be categorized into three major crust types based on diagnostic absorption features and mineralogical ground truth data. The mineralogical crust types are related to different zones of surface change as well as pan morphology that influences brine flow during the pan inundation and desiccation cycles. These combined information are used to spatially map depositional environments where the more dynamic halite crust concentrates in lower areas although stable gypsum and calcite/sepiolite crusts appear in higher elevated areas.}, language = {en} } @misc{MilewskiChabrillatBehling2017, author = {Milewski, Robert and Chabrillat, Sabine and Behling, Robert}, title = {Analyses of Recent Sediment Surface Dynamic of a Namibian Kalahari Salt Pan Based on Multitemporal Landsat and Hyperspectral Hyperion Data}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {987}, issn = {1866-8372}, doi = {10.25932/publishup-47564}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475642}, pages = {26}, year = {2017}, abstract = {This study combines spaceborne multitemporal and hyperspectral data to analyze the spatial distribution of surface evaporite minerals and changes in a semi-arid depositional environment associated with episodic flooding events, the Omongwa salt pan (Kalahari, Namibia). The dynamic of the surface crust is evaluated by a change-detection approach using the Iterative-reweighted Multivariate Alteration Detection (IR-MAD) based on the Landsat archive imagery from 1984 to 2015. The results show that the salt pan is a highly dynamic and heterogeneous landform. A change gradient is observed from very stable pan border to a highly dynamic central pan. On the basis of hyperspectral EO-1 Hyperion images, the current distribution of surface evaporite minerals is characterized using Spectral Mixture Analysis (SMA). Assessment of field and image endmembers revealed that the pan surface can be categorized into three major crust types based on diagnostic absorption features and mineralogical ground truth data. The mineralogical crust types are related to different zones of surface change as well as pan morphology that influences brine flow during the pan inundation and desiccation cycles. These combined information are used to spatially map depositional environments where the more dynamic halite crust concentrates in lower areas although stable gypsum and calcite/sepiolite crusts appear in higher elevated areas.}, language = {en} } @phdthesis{Wambura2017, author = {Wambura, Frank Joseph}, title = {Analysis of anthropogenic impacts on water resources in the Wami River basin, Tanzania}, school = {Universit{\"a}t Potsdam}, pages = {116}, year = {2017}, language = {en} } @article{BehyariMohajjelSobeletal.2017, author = {Behyari, Mahdi and Mohajjel, Mohammad and Sobel, Edward and Rezaeian, Mahnaz and Moayyed, Mohssen and Schmidt, Alexander}, title = {Analysis of exhumation history in Misho Mountains, NW Iran}, series = {Neues Jahrbuch f{\"u}r Geologie und Pal{\"a}ontologie : merged with Neues Jahrbuch f{\"u}r Geol. und Pal{\"a}ont. Monatshefte". Abhandlungen}, volume = {283}, journal = {Neues Jahrbuch f{\"u}r Geologie und Pal{\"a}ontologie : merged with Neues Jahrbuch f{\"u}r Geol. und Pal{\"a}ont. Monatshefte". Abhandlungen}, number = {3}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0077-7749}, doi = {10.1127/njgpa/2017/0642}, pages = {291 -- 308}, year = {2017}, abstract = {The Misho complex in Northwest Iran is a prominent topographic massif bounded by well known active faults. Our new structural analysis of this area indicates that faulting has important role in the exhumation of this complex. The conjugate orientation of the North and South Misho Faults caused uplift in the Misho and exhumation of the Precambrian crystalline basement. Our structural and stratigraphic data shows that rapid uplift could have been initiation since the 21-22 Ma and exhumation rate was about 0.16 to 0.24 km/Ma. To refine this age, we performed U/Pb analysis of detrital zircon from the Upper Red Formation using LA-ICP-MS. We conducted AFT analysis on 6 basement samples from the hanging wall and 1 sample from the Upper Red Formation in the footwall NMF. Uplift in the hanging wall of NMF led to resting of sample 916 marl. This geochronologic and thermochronologic data shows that exhumation in the MC is diachronously along strike and affected by faults. The phase of exhumation is documented in the study area and entire Iranian plateau is related to the final closure of the Neo-Tethys and northward motion of the Arabian Plate.}, language = {en} } @misc{PetrowHeistermannBronstert2017, author = {Petrow, Theresia and Heistermann, Maik and Bronstert, Axel}, title = {Analysis of Flash Floods in Germany}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {61}, journal = {Hydrologie und Wasserbewirtschaftung}, publisher = {Bundesanst. f{\"u}r Gew{\"a}sserkunde}, address = {Koblenz}, issn = {1439-1783}, pages = {212 -- 212}, year = {2017}, language = {en} } @phdthesis{Schmidt2017, author = {Schmidt, Silke Regina}, title = {Analyzing lakes in the time frequency domain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406955}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 126}, year = {2017}, abstract = {The central aim of this thesis is to demonstrate the benefits of innovative frequency-based methods to better explain the variability observed in lake ecosystems. Freshwater ecosystems may be the most threatened part of the hydrosphere. Lake ecosystems are particularly sensitive to changes in climate and land use because they integrate disturbances across their entire catchment. This makes understanding the dynamics of lake ecosystems an intriguing and important research priority. This thesis adds new findings to the baseline knowledge regarding variability in lake ecosystems. It provides a literature-based, data-driven and methodological framework for the investigation of variability and patterns in environmental parameters in the time frequency domain. Observational data often show considerable variability in the environmental parameters of lake ecosystems. This variability is mostly driven by a plethora of periodic and stochastic processes inside and outside the ecosystems. These run in parallel and may operate at vastly different time scales, ranging from seconds to decades. In measured data, all of these signals are superimposed, and dominant processes may obscure the signals of other processes, particularly when analyzing mean values over long time scales. Dominant signals are often caused by phenomena at long time scales like seasonal cycles, and most of these are well understood in the limnological literature. The variability injected by biological, chemical and physical processes operating at smaller time scales is less well understood. However, variability affects the state and health of lake ecosystems at all time scales. Besides measuring time series at sufficiently high temporal resolution, the investigation of the full spectrum of variability requires innovative methods of analysis. Analyzing observational data in the time frequency domain allows to identify variability at different time scales and facilitates their attribution to specific processes. The merit of this approach is subsequently demonstrated in three case studies. The first study uses a conceptual analysis to demonstrate the importance of time scales for the detection of ecosystem responses to climate change. These responses often occur during critical time windows in the year, may exhibit a time lag and can be driven by the exceedance of thresholds in their drivers. This can only be detected if the temporal resolution of the data is high enough. The second study applies Fast Fourier Transform spectral analysis to two decades of daily water temperature measurements to show how temporal and spatial scales of water temperature variability can serve as an indicator for mixing in a shallow, polymictic lake. The final study uses wavelet coherence as a diagnostic tool for limnology on a multivariate high-frequency data set recorded between the onset of ice cover and a cyanobacteria summer bloom in the year 2009 in a polymictic lake. Synchronicities among limnological and meteorological time series in narrow frequency bands were used to identify and disentangle prevailing limnological processes. Beyond the novel empirical findings reported in the three case studies, this thesis aims to more generally be of interest to researchers dealing with now increasingly available time series data at high temporal resolution. A set of innovative methods to attribute patterns to processes, their drivers and constraints is provided to help make more efficient use of this kind of data.}, language = {en} } @article{GaedkeKlauschies2017, author = {Gaedke, Ursula and Klauschies, Toni}, title = {Analyzing the shape of observed trait distributions enables a data-based moment closure of aggregate models}, series = {Limnology and Oceanography: Methods}, volume = {15}, journal = {Limnology and Oceanography: Methods}, publisher = {Wiley}, address = {Hoboken}, issn = {1541-5856}, doi = {10.1002/lom3.10218}, pages = {979 -- 994}, year = {2017}, abstract = {The shape of trait distributions may inform about the selective forces that structure ecological communities. Here, we present a new moment-based approach to classify the shape of observed biomass-weighted trait distributions into normal, peaked, skewed, or bimodal that facilitates spatio-temporal and cross-system comparisons. Our observed phytoplankton trait distributions exhibited substantial variance and were mostly skewed or bimodal rather than normal. Additionally, mean, variance, skewness und kurtosis were strongly correlated. This is in conflict with trait-based aggregate models that often assume normally distributed trait values and small variances. Given these discrepancies between our data and general model assumptions we used the observed trait distributions to test how well different aggregate models with first- or second-order approximations and different types of moment closure predict the biomass, mean trait, and trait variance dynamics using weakly or moderately nonlinear fitness functions. For weakly non-linear fitness functions aggregate models with a second-order approximation and a data-based moment closure that relied on the observed correlations between skewness and mean, and kurtosis and variance predicted biomass and often also mean trait changes fairly well and better than models with first-order approximations or a normal-based moment closure. In contrast, none of the models reflected the changes of the trait variances reliably. Aggregate model performance was often also poor for moderately nonlinear fitness functions. This questions a general applicability of the normal-based approach, in particular for predicting variance dynamics determining the speed of trait changes and maintenance of biodiversity. We evaluate in detail how and why better approximations can be obtained.}, language = {en} } @article{HeineckeEppReschkeetal.2017, author = {Heinecke, Liv and Epp, Laura Saskia and Reschke, Maria and Stoof-Leichsenring, Kathleen Rosemarie and Mischke, Steffen and Plessen, Birgit and Herzschuh, Ulrike}, title = {Aquatic macrophyte dynamics in Lake Karakul (Eastern Pamir) over the last 29 cal ka revealed by sedimentary ancient DNA and geochemical analyses of macrofossil remains}, series = {Journal of paleolimnolog}, volume = {58}, journal = {Journal of paleolimnolog}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-017-9986-7}, pages = {403 -- 417}, year = {2017}, language = {en} } @article{EugeniaCisternaKoukharskyCoiraetal.2017, author = {Eugenia Cisterna, Clara and Koukharsky, Magdalena and Coira, Beatriz and G{\"u}nter, Christina and Ulbrich, Horstpeter H.}, title = {Arenigian tholeiitic basalts in the Famatina Ordovician basin, northwestern Argentina: emplacement conditions and their tectonic significance}, series = {Andean geology}, volume = {44}, journal = {Andean geology}, publisher = {Servicio Nacional de Geolog{\`i}a y Miner{\`i}a}, address = {Santiago}, issn = {0718-7106}, doi = {10.5027/andgeoV44n2-a02}, pages = {123 -- 146}, year = {2017}, abstract = {This study is focused on the analysis of volcanic deposits that crop out at the middle portion of the Las Planchadas range, northern part of the Famatina System in Argentina. These volcanic rocks are records of an Ordovician effusive basaltic volcanism that took place under subaqueous marine conditions. Along the study area crop out an Arenigian volcanic and volcaniclastic rocks succession with massive and autoclastic lavas, hyaloclastites of basaltic composition and volcaniclastic sandstones and mudstones. Large volumes of the volcanic deposits were strongly affected by fragmentation processes during their subaqueous emplacement and in situ accumulated as basaltic breccias. The same volcanic-volcaniclastic association crops out to the south of the Las Planchadas range, forming a basaltic belt with similar characteristics. The geochemical features of the basalts are compatible with depleted mid-ocean ridge basalt (MORB)-like source for the magma, with contribution of subducted related components such as water rich marine hemipelagic sediments, compatible with a back arc geotectonic setting developed along the northern part of the Famatina System during the Arenigian.}, language = {en} } @phdthesis{Kellermann2017, author = {Kellermann, Patric}, title = {Assessing natural risks for railway infrastructure and transportation in Austria}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103877}, school = {Universit{\"a}t Potsdam}, pages = {x, 113}, year = {2017}, abstract = {Natural hazards can have serious societal and economic impacts. Worldwide, around one third of economic losses due to natural hazards are attributable to floods. The majority of natural hazards are triggered by weather-related extremes such as heavy precipitation, rapid snow melt, or extreme temperatures. Some of them, and in particular floods, are expected to further increase in terms of frequency and/or intensity in the coming decades due to the impacts of climate change. In this context, the European Alps areas are constantly disclosed as being particularly sensitive. In order to enhance the resilience of societies to natural hazards, risk assessments are substantial as they can deliver comprehensive risk information to be used as a basis for effective and sustainable decision-making in natural hazards management. So far, current assessment approaches mostly focus on single societal or economic sectors - e.g. flood damage models largely concentrate on private-sector housing - and other important sectors, such as the transport infrastructure sector, are widely neglected. However, transport infrastructure considerably contributes to economic and societal welfare, e.g. by ensuring mobility of people and goods. In Austria, for example, the national railway network is essential for the European transit of passengers and freights as well as for the development of the complex Alpine topography. Moreover, a number of recent experiences show that railway infrastructure and transportation is highly vulnerable to natural hazards. As a consequence, the Austrian Federal Railways had to cope with economic losses on the scale of several million euros as a result of flooding and other alpine hazards. The motivation of this thesis is to contribute to filling the gap of knowledge about damage to railway infrastructure caused by natural hazards by providing new risk information for actors and stakeholders involved in the risk management of railway transportation. Hence, in order to support the decision-making towards a more effective and sustainable risk management, the following two shortcomings in natural risks research are approached: i) the lack of dedicated models to estimate flood damage to railway infrastructure, and ii) the scarcity of insights into possible climate change impacts on the frequency of extreme weather events with focus on future implications for railway transportation in Austria. With regard to flood impacts to railway infrastructure, the empirically derived damage model Railway Infrastructure Loss (RAIL) proved expedient to reliably estimate both structural flood damage at exposed track sections of the Northern Railway and resulting repair cost. The results show that the RAIL model is capable of identifying flood risk hot spots along the railway network and, thus, facilitates the targeted planning and implementation of (technical) risk reduction measures. However, the findings of this study also show that the development and validation of flood damage models for railway infrastructure is generally constrained by the continuing lack of detailed event and damage data. In order to provide flood risk information on the large scale to support strategic flood risk management, the RAIL model was applied for the Austrian Mur River catchment using three different hydraulic scenarios as input as well as considering an increased risk aversion of the railway operator. Results indicate that the model is able to deliver comprehensive risk information also on the catchment level. It is furthermore demonstrated that the aspect of risk aversion can have marked influence on flood damage estimates for the study area and, hence, should be considered with regard to the development of risk management strategies. Looking at the results of the investigation on future frequencies of extreme weather events jeopardizing railway infrastructure and transportation in Austria, it appears that an increase in intense rainfall events and heat waves has to be expected, whereas heavy snowfall and cold days are likely to decrease. Furthermore, results indicate that frequencies of extremes are rather sensitive to changes of the underlying thresholds. It thus emphasizes the importance to carefully define, validate, and — if needed — to adapt the thresholds that are used to detect and forecast meteorological extremes. For this, continuous and standardized documentation of damaging events and near-misses is a prerequisite. Overall, the findings of the research presented in this thesis agree on the necessity to improve event and damage documentation procedures in order to enable the acquisition of comprehensive and reliable risk information via risk assessments and, thus, support strategic natural hazards management of railway infrastructure and transportation.}, language = {en} } @phdthesis{Schmidt2017, author = {Schmidt, Katja}, title = {Assessing, testing, and implementing socio-cultural valuation methods to operationalise ecosystem services in land use management}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411049}, school = {Universit{\"a}t Potsdam}, pages = {165}, year = {2017}, abstract = {Ecosystem services (ESs) are defined as the contributions that ecosystems make to human wellbeing and are increasingly being used as an approach to explore the importance of ecosystems for humans through their valuation. Although value plurality has been recognised long before the mainstreaming of ESs research, socio-cultural valuation is still underrepresented in ESs assessments. It is the central goal of this PhD dissertation to explore the ability of socio-cultural valuation methods for the operationalisation of ESs research in land management. To address this, I formulated three research objectives that are briefly outlined below and relate to the three studies conducted during this dissertation. The first objective relates to the assessment of the current role of socio-cultural valuation in ESs research. Human values are central to ESs research yet non-monetary socio-cultural valuation methods have been found underrepresented in the field of ESs science. In regard to the unbalanced consideration of value domains and conceptual uncertainties, I perform a systematic literature review aiming to answer the research question: To what extent have socio-cultural values been addressed in ESs assessments. The second objective aims to test socio-cultural valuation methods of ESs and their relevance for land use preferences by exploring their methodological opportunities and limitations. Socio-cultural valuation methods have only recently become a focus in ESs research and therefore bear various uncertainties in regard to their methodological implications. To overcome these uncertainties, I analysed responses to a visitor survey. The research questions related to the second objective were: What are the implications of different valuation methods for ESs values? To what extent are land use preferences explained by socio-cultural values of ESs? The third objective addressed in this dissertation is the implementation of ESs research into land management through socio-cultural valuation. Though it is emphasised that the ESs approach can assist decision making, there is little empirical evidence of the effect of ESs knowledge on land management. I proposed a way to implement transdisciplinary, spatially explicit research on ESs by answering the following research questions: Which landscape features underpinning ESs supply are considered in land management? How can participatory approaches accounting for ESs be operationalised in land management? The empirical research resulted in five main findings that provide answers to the research questions. First, this dissertation provides evidence that socio-cultural values are an integral part of ESs research. I found that they can be assessed for provisioning, regulating, and cultural services though they are linked to cultural services to a greater degree. Socio-cultural values have been assessed by monetary and non-monetary methods and their assessment is effectively facilitated by stakeholder participation. Second, I found that different methods of socio-cultural valuation revealed different information. Whereas rating revealed a general value of ESs, weighting was found more suitable to identify priorities across ESs. Value intentions likewise differed in the distribution of values, generally implying a higher value for others than for respondents themselves. Third, I showed that ESs values were distributed similarly across groups with differing land use preferences. Thus, I provided empirical evidence that ESs values and landscape values should not be used interchangeably. Fourth, I showed which landscape features important for ESs supply in a Scottish regional park are not sufficiently accounted for in the current management strategy. This knowledge is useful for the identification of priority sites for land management. Finally, I provide an approach to explore how ESs knowledge elicited by participatory mapping can be operationalised in land management. I demonstrate how stakeholder knowledge and values can be used for the identification of ESs hotspots and how these hotspots can be compared to current management priorities. This dissertation helps to bridge current gaps of ESs science by advancing the understanding of the current role of socio-cultural values in ESs research, testing different methods and their relevance for land use preferences, and implementing ESs knowledge into land management. If and to what extent ESs and their values are implemented into ecosystem management is mainly the choice of the management. An advanced understanding of socio-cultural valuation methods contributes to the normative basis of this management, while the proposal for the implementation of ESs in land management presents a practical approach of how to transfer this type of knowledge into practice. The proposed methods for socio-cultural valuation can support guiding land management towards a balanced consideration of ESs and conservation goals.}, language = {en} } @misc{DidovetsLobanovaBronstertetal.2017, author = {Didovets, Iulii and Lobanova, Anastasia and Bronstert, Axel and Snizhko, Sergiy and Maule, Cathrine Fox and Krysanova, Valentina}, title = {Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394956}, pages = {18}, year = {2017}, abstract = {The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, UpperWestern Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM)—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.}, language = {en} } @article{DidovetsLobanovaBronstertetal.2017, author = {Didovets, Iulii and Lobanova, Anastasia and Bronstert, Axel and Snizhko, Sergiy and Maule, Cathrine Fox and Krysanova, Valentina}, title = {Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling}, series = {Water}, volume = {9}, journal = {Water}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w9030204}, pages = {18}, year = {2017}, abstract = {The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, UpperWestern Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM)—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.}, language = {en} } @article{HammerFaehOhrnberger2017, author = {Hammer, Conny and F{\"a}h, Donat and Ohrnberger, Matthias}, title = {Automatic detection of wet-snow avalanche seismic signals}, series = {Natural hazards : journal of the International Society for the Prevention and Mitigation of Natural Hazards}, volume = {86}, journal = {Natural hazards : journal of the International Society for the Prevention and Mitigation of Natural Hazards}, publisher = {Springer}, address = {New York}, issn = {0921-030X}, doi = {10.1007/s11069-016-2707-0}, pages = {601 -- 618}, year = {2017}, abstract = {Avalanche activity is an important factor when estimating the regional avalanche danger. Moreover, a complete and detailed picture of avalanche activity is needed to understand the processes that lead to natural avalanche release. Currently, information on avalanche activity is mainly obtained through visual observations. However, this involves large uncertainties in the number and release times, influencing the subsequent analysis. Therefore, alternative methods for the remote detection of snow avalanches in particular in non-observed areas are highly desirable. In this study, we use the excited ground vibration to identify avalanches automatically. The specific seismic signature of avalanches facilitates the objective detection by a recently developed classification procedure. A probabilistic description of the signals, called hidden Markov models, allows the robust identification of corresponding signals in the continuous data stream. The procedure is based upon learning a general background model from continuous seismic data. Then, a single reference waveform is used to update an event-specific classifier. Thus, a minimum amount of training data is required by constructing such a classifier on the fly. In this study, we processed five days of continuous data recorded in the Swiss Alps during the avalanche winter 1999. With the restriction of testing large wet-snow avalanches only, the presented approach achieved very convincing results. We successfully detect avalanches over a large volume and distance range. Ninety-two percentage of all detections (43 out of 47) could be confirmed as avalanche events; only four false alarms are reported. We see a clear dependence of recognition capability on run-out distance and source-receiver distance of the observed events: Avalanches are detectable up to a source-receiver distance of eight times the avalanche length. Implications for analyzing a more comprehensive data set (smaller events and different flow regimes) are discussed in detail.}, language = {en} } @article{LoberaAndresDomenechLopezTarazonetal.2017, author = {Lobera, Gemma and Andres-Domenech, Ignacio and L{\´o}pez-Taraz{\´o}n, Jos{\´e} Andr{\´e}s and Millan-Romero, Pedro and Valles, Francisco and Vericat, Damia and Batalla Villanueva, Ramon J.}, title = {Bed disturbance below dams: observations from two Mediterranean rivers}, series = {Land degradation \& development}, volume = {28}, journal = {Land degradation \& development}, publisher = {Wiley}, address = {Hoboken}, issn = {1085-3278}, doi = {10.1002/ldr.2785}, pages = {2493 -- 2512}, year = {2017}, abstract = {River-bed disturbance and associated sedimentary processes such as particle mobility are central elements to assess river ecosystem functioning. Dams change river dynamics affecting the magnitude and frequency of biophysical elements that depend on them. This paper examines the effects of two dams different in size, management, and location, on the flow regime, flood competence, and bed disturbance in two contrasting Mediterranean rivers, the Esera and the Siurana. For this purpose, two reaches on each river were monitored upstream and downstream from reservoirs. Several monitoring and modeling techniques were used to characterize flow competence, particle entrainment, and the volumes of sediments eroded and deposited after floods. The flow regime of the Esera has been modified from nivo-pluvial regime, typical of humid mountainous environments, to that observed in dry semiarid regions, in which high magnitude but low frequency floods are the dominant processes. Conversely, the flow regime of the Siurana has changed from a typical Mediterranean stream to a regime observed in more temperate environments, with more permanent and stable flows. Both rivers show notably physical changes, with channels clearly less dynamic below the dams. The lack of competent flows together with the sediment deficit associated with the dams has led to less active fluvial environments (reduced particle mobility and bed scour dynamics), a fact that affects instream habitat structure (more uniform grain size distribution, less physical heterogeneity, more stable flows), overall contributing to the degradation of the stream corridor and the subsequent environmental deterioration of the whole fluvial landscape. Copyright (c) 2017 John Wiley \& Sons, Ltd.}, language = {en} } @article{ToySutherlandTownendetal.2017, author = {Toy, Virginia Gail and Sutherland, Rupert and Townend, John and Allen, Michael J. and Becroft, Leeza and Boles, Austin and Boulton, Carolyn and Carpenter, Brett and Cooper, Alan and Cox, Simon C. and Daube, Christopher and Faulkner, D. R. and Halfpenny, Angela and Kato, Naoki and Keys, Stephen and Kirilova, Martina and Kometani, Yusuke and Little, Timothy and Mariani, Elisabetta and Melosh, Benjamin and Menzies, Catriona D. and Morales, Luiz and Morgan, Chance and Mori, Hiroshi and Niemeijer, Andre and Norris, Richard and Prior, David and Sauer, Katrina and Schleicher, Anja Maria and Shigematsu, Norio and Teagle, Damon A. H. and Tobin, Harold and Valdez, Robert and Williams, Jack and Yeo, Samantha and Baratin, Laura-May and Barth, Nicolas and Benson, Adrian and Boese, Carolin and C{\´e}l{\´e}rier, Bernard and Chamberlain, Calum J. and Conze, Ronald and Coussens, Jamie and Craw, Lisa and Doan, Mai-Linh and Eccles, Jennifer and Grieve, Jason and Grochowski, Julia and Gulley, Anton and Howarth, Jamie and Jacobs, Katrina and Janku-Capova, Lucie and Jeppson, Tamara and Langridge, Robert and Mallyon, Deirdre and Marx, Ray and Massiot, C{\´e}cile and Mathewson, Loren and Moore, Josephine and Nishikawa, Osamu and Pooley, Brent and Pyne, Alex and Savage, Martha K. and Schmitt, Doug and Taylor-Offord, Sam and Upton, Phaedra and Weaver, Konrad C. and Wiersberg, Thomas and Zimmer, Martin}, title = {Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand}, series = {New Zealand journal of geology and geophysics : an international journal of the geoscience of New Zealand, the Pacific Rim, and Antarctica ; NZJG}, volume = {60}, journal = {New Zealand journal of geology and geophysics : an international journal of the geoscience of New Zealand, the Pacific Rim, and Antarctica ; NZJG}, number = {4}, publisher = {Taylor \& Francis}, address = {Abingdon}, organization = {DFDP-2 Sci Team}, issn = {0028-8306}, doi = {10.1080/00288306.2017.1375533}, pages = {497 -- 518}, year = {2017}, abstract = {During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5-893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200-400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled.}, language = {en} } @misc{AroduduHelmingWiggeringetal.2017, author = {Arodudu, Oludunsin Tunrayo and Helming, Katharina and Wiggering, Hubert and Voinov, Alexey}, title = {Bioenergy from low-intensity agricultural systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400403}, pages = {18}, year = {2017}, abstract = {In light of possible future restrictions on the use of fossil fuel, due to climate change obligations and continuous depletion of global fossil fuel reserves, the search for alternative renewable energy sources is expected to be an issue of great concern for policy stakeholders. This study assessed the feasibility of bioenergy production under relatively low-intensity conservative, eco-agricultural settings (as opposed to those produced under high-intensity, fossil fuel based industrialized agriculture). Estimates of the net energy gain (NEG) and the energy return on energy invested (EROEI) obtained from a life cycle inventory of the energy inputs and outputs involved reveal that the energy efficiency of bioenergy produced in low-intensity eco-agricultural systems could be as much as much as 448.5-488.3 GJ·ha-1 of NEG and an EROEI of 5.4-5.9 for maize ethanol production systems, and as much as 155.0-283.9 GJ·ha-1 of NEG and an EROEI of 14.7-22.4 for maize biogas production systems. This is substantially higher than for industrialized agriculture with a NEG of 2.8-52.5 GJ·ha-1 and an EROEI of 1.2-1.7 for maize ethanol production systems, as well as a NEG of 59.3-188.7 GJ·ha-1 and an EROEI of 2.2-10.2 for maize biogas production systems. Bioenergy produced in low-intensity eco-agricultural systems could therefore be an important source of energy with immense net benefits for local and regional end-users, provided a more efficient use of the co-products is ensured.}, language = {en} } @article{DallmeyerClaussenNietal.2017, author = {Dallmeyer, Anne and Claussen, Martin and Ni, Jian and Cao, Xianyong and Wang, Yongbo and Fischer, Nils and Pfeiffer, Madlene and Jin, Liya and Khon, Vyacheslav and Wagner, Sebastian and Haberkorn, Kerstin and Herzschuh, Ulrike}, title = {Biome changes in Asia since the mid-Holocene}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {13}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-13-107-2017}, pages = {107 -- 134}, year = {2017}, abstract = {The large variety of atmospheric circulation systems affecting the eastern Asian climate is reflected by the complex Asian vegetation distribution. Particularly in the transition zones of these circulation systems, vegetation is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate-vegetation relationship is lacking. To assess the Holocene vegetation change and to obtain an ensemble of potential mid-Holocene biome distributions for eastern Asia, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient Holocene climate simulations performed in coupled atmosphere-ocean(-vegetation) models. The simulated biome changes are compared with pollen-based biome records for different key regions. In all simulations, substantial biome shifts during the last 6000 years are confined to the high northern latitudes and the monsoon-westerly wind transition zone, but the temporal evolution and amplitude of change strongly depend on the climate forcing. Large parts of the southern tundra are replaced by taiga during the mid-Holocene due to a warmer growing season and the boreal treeline in northern Asia is shifted northward by approx. 4 degrees in the ensemble mean, ranging from 1.5 to 6 degrees in the individual simulations, respectively. This simulated treeline shift is in agreement with pollen-based reconstructions from northern Siberia. The desert fraction in the transition zone is reduced by 21\% during the mid-Holocene compared to pre-industrial due to enhanced precipitation. The desert-steppe margin is shifted westward by 5 degrees (1-9 degrees in the individual simulations). The forest biomes are expanded north-westward by 2 degrees, ranging from 0 to 4 degrees in the single simulations. These results corroborate pollen-based reconstructions indicating an extended forest area in north-central China during the mid-Holocene. According to the model, the forest-to-non-forest and steppe-to-desert changes in the climate transition zones are spatially not uniform and not linear since the mid-Holocene.}, language = {en} } @article{AichnerHiltPerillonetal.2017, author = {Aichner, Bernhard and Hilt, Sabine and Perillon, Cecile and Gillefalk, Mikael and Sachse, Dirk}, title = {Biosynthetic hydrogen isotopic fractionation factors during lipid synthesis in submerged aquatic macrophytes: Effect of groundwater discharge and salinity}, series = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, volume = {113}, journal = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0146-6380}, doi = {10.1016/j.orggeochem.2017.07.021}, pages = {10 -- 16}, year = {2017}, abstract = {Sedimentary lipid biomarkers have become widely used tools for reconstructing past climatic and ecological changes due to their ubiquitous occurrence in lake sediments. In particular, the hydrogen isotopic composition (expressed as delta D values) of leaf wax lipids derived from terrestrial plants has been a focus of research during the last two decades and the understanding of competing environmental and plant physiological factors influencing the delta D values has greatly improved. Comparatively less attention has been paid to lipid biomarkers derived from aquatic plants, although these compounds are abundant in many lacustrine sediments. We therefore conducted a field and laboratory experiment to study the effect of salinity and groundwater discharge on the isotopic composition of aquatic plant biomarkers. We analyzed samples of the common submerged plant species, Potamogeton pectinatus (sago pondweed), which has a wide geographic distribution and can tolerate high salinity. We tested the effect of groundwater discharge (characterized by more negative delta D values relative to lake water) and salinity on the delta D values of n-alkanes from P. pectinatus by comparing plants (i) collected from the oligotrophic freshwater Lake Stechlin (Germany) at shallow littoral depth from locations with and without groundwater discharge, and (ii) plants grown from tubers collected from the eutrophic Lake Muggelsee in nutrient solution at four salinity levels. Isotopically depleted groundwater did not have a significant influence on the delta D values of n-alkanes in Lake Stechlin P. pectinatus and calculated isotopic fractionation factors epsilon(l/w) between lake water and n-alkanes averaged -137 +/- 9\%(n-C-23), -136 +/- 7\%(n-C-25) and -131 +/- 6\%(n-C-27), respectively. Similar epsilon values were calculated for plants from Lake Muggelsee grown in freshwater nutrient solution (-134 +/- 11\% for n-C-23), while greater fractionation was observed at increased salinity values of 10 (163 +/- 12\%) and 15(-172 +/- 15\%). We therefore suggest an average e value of -136 +/- 9\% between source water and the major n-alkanes in P. pectinatus grown under freshwater conditions. Our results demonstrate that isotopic fractionation can increase by 30-40\% at salinity values 10 and 15. These results could be explained either by inhibited plant growth at higher salinity, or by metabolic adaptation to salt stress that remain to be elucidated. A potential salinity effect on dD values of aquatic lipids requires further examination, since this would impact on the interpretation of downcore isotopic data in paleohydrologic studies. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @phdthesis{Meier2017, author = {Meier, Tobias}, title = {Borehole Breakouts in Transversely Isotropic Posidonia Shale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400019}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 133}, year = {2017}, abstract = {Borehole instabilities are frequently encountered when drilling through finely laminated, organic rich shales ({\O}kland and Cook, 1998; Ottesen, 2010; etc.); such instabilities should be avoided to assure a successful exploitation and safe production of the contained unconventional hydrocarbons. Borehole instabilities, such as borehole breakouts or drilling induced tensile fractures, may lead to poor cementing of the borehole annulus, difficulties with recording and interpretation of geophysical logs, low directional control and in the worst case the loss of the well. If these problems are not recognized and expertly remedied, pollution of the groundwater or the emission of gases into the atmosphere can occur since the migration paths of the hydrocarbons in the subsurface are not yet fully understood (e.g., Davies et al., 2014; Zoback et al., 2010). In addition, it is often mentioned that the drilling problems encountered and the resulting downtimes of the wellbore system in finely laminated shales significantly increase drilling costs (Fjaer et al., 2008; Aadnoy and Ong, 2003). In order to understand and reduce the borehole instabilities during drilling in unconventional shales, we investigate stress-induced irregular extensions of the borehole diameter, which are also referred to as borehole breakouts. For this purpose, experiments with different borehole diameters, bedding plane angles and stress boundary conditions were performed on finely laminated Posidonia shales. The Lower Jurassic Posidonia shale is one of the most productive source rocks for conventional reservoirs in Europe and has the greatest potential for unconventional oil and gas in Europe (Littke et al., 2011). In this work, Posidonia shale specimens from the North (PN) and South (PS) German basins were selected and characterized petrophysically and mechanically. The composition of the two shales is dominated by calcite (47-56\%) followed by clays (23-28\%) and quartz (16-17\%). The remaining components are mainly pyrite and organic matter. The porosity of the shales varies considerably and is up to 10\% for PS and 1\% for PN, which is due to a larger deposition depth of PN. Both shales show marked elasticity and strength anisotropy, which can be attributed to a macroscopic distribution and orientation of soft and hard minerals. Under load the hard minerals form a load-bearing, supporting structure, while the soft minerals compensate the deformation. Therefore, if loaded parallel to the bedding, the Posidonia shale is more brittle than loaded normal to the bedding. The resulting elastic anisotropy, which can be defined by the ratio of the modulus of elasticity parallel and normal to the bedding, is about 50\%, while the strength anisotropy (i.e., the ratio of uniaxial compressive strength normal and parallel to the bedding) is up to 66\%. Based on the petrophysical characterization of the two rocks, a transverse isotropy (TVI) was derived. In general, PS is softer and weaker than PN, which is due to the stronger compaction of the material due to the higher burial depth. Conventional triaxial borehole breakout experiments on specimens with different borehole diameters showed that, when the diameter of the borehole is increased, the stress required to initiate borehole breakout decreases to a constant value. This value can be expressed as the ratio of the tangential stress and the uniaxial compressive strength of the rock. The ratio increases exponentially with decreasing borehole diameter from about 2.5 for a 10 mm diameter hole to ~ 7 for a 1 mm borehole (increase of initiation stress by 280\%) and can be described by a fracture mechanic based criterion. The reduction in borehole diameter is therefore a considerable aspect in reducing the risk of breakouts. New drilling techniques with significantly reduced borehole diameters, such as "fish-bone" holes, are already underway and are currently being tested (e.g., Xing et al., 2012). The observed strength anisotropy and the TVI material behavior are also reflected in the observed breakout processes at the borehole wall. Drill holes normal to the bedding develop breakouts in a plane of isotropy and are not affected by the strength or elasticity anisotropy. The observed breakouts are point-symmetric and form compressive shear failure planes, which can be predicted by a Mohr-Coulomb failure approach. If the shear failure planes intersect, conjugate breakouts can be described as "dog-eared" breakouts. While the initiation of breakouts for wells oriented normal to the stratification has been triggered by random local defects, reduced strengths parallel to bedding planes are the starting point for breakouts for wells parallel to the bedding. In the case of a deflected borehole trajectory, therefore, the observed failure type changes from shear-induced failure surfaces to buckling failure of individual layer packages. In addition, the breakout depths and widths increased, resulting in a stress-induced enlargement of the borehole cross-section and an increased output of rock material into the borehole. With the transition from shear to buckling failure and changing bedding plane angle with respect to the borehole axis, the stress required for inducing wellbore breakouts drops by 65\%. These observations under conventional triaxial stress boundary conditions could also be confirmed under true triaxial stress conditions. Here breakouts grew into the rock as a result of buckling failure, too. In this process, the broken layer packs rotate into the pressure-free drill hole and detach themselves from the surrounding rock by tensile cracking. The final breakout shape in Posidonia shale can be described as trapezoidal when the bedding planes are parallel to the greatest horizontal stress and to the borehole axis. In the event that the largest horizontal stress is normal to the stratification, breakouts were formed entirely by shear fractures between the stratification and required higher stresses to initiate similar to breakouts in conventional triaxial experiments with boreholes oriented normal to the bedding. In the content of this work, a fracture mechanics-based failure criterion for conventional triaxial loading conditions in isotropic rocks (Dresen et al., 2010) has been successfully extended to true triaxial loading conditions in the transverse isotropic rock to predict the initiation of borehole breakouts. The criterion was successfully verified on the experiments carried out. The extended failure criterion and the conclusions from the laboratory and numerical work may help to reduce the risk of borehole breakouts in unconventional shales.}, language = {en} } @article{SchwanghartScherler2017, author = {Schwanghart, Wolfgang and Scherler, Dirk}, title = {Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques}, series = {Earth surface dynamics}, volume = {5}, journal = {Earth surface dynamics}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-5-821-2017}, pages = {821 -- 839}, year = {2017}, abstract = {The analysis of longitudinal river profiles is an important tool for studying landscape evolution. However, characterizing river profiles based on digital elevation models (DEMs) suffers from errors and artifacts that particularly prevail along valley bottoms. The aim of this study is to characterize uncertainties that arise from the analysis of river profiles derived from different, near-globally available DEMs. We devised new algorithms quantile carving and the CRS algorithm - that rely on quantile regression to enable hydrological correction and the uncertainty quantification of river profiles. We find that globally available DEMs commonly overestimate river elevations in steep topography. The distributions of elevation errors become increasingly wider and right skewed if adjacent hillslope gradients are steep. Our analysis indicates that the AW3D DEM has the highest precision and lowest bias for the analysis of river profiles in mountainous topography. The new 12m resolution TanDEM-X DEM has a very low precision, most likely due to the combined effect of steep valley walls and the presence of water surfaces in valley bottoms. Compared to the conventional approaches of carving and filling, we find that our new approach is able to reduce the elevation bias and errors in longitudinal river profiles.}, language = {en} } @article{ToetzkeKardjilovMankeetal.2017, author = {Toetzke, Christian and Kardjilov, Nikolay and Manke, Ingo and Oswald, Sascha}, title = {Capturing 3D Water Flow in Rooted Soil by Ultra-fast Neutron Tomography}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-06046-w}, pages = {9}, year = {2017}, abstract = {Water infiltration in soil is not only affected by the inherent heterogeneities of soil, but even more by the interaction with plant roots and their water uptake. Neutron tomography is a unique non-invasive 3D tool to visualize plant root systems together with the soil water distribution in situ. So far, acquisition times in the range of hours have been the major limitation for imaging 3D water dynamics. Implementing an alternative acquisition procedure we boosted the speed of acquisition capturing an entire tomogram within 10 s. This allows, for the first time, tracking of a water front ascending in a rooted soil column upon infiltration of deuterated water time-resolved in 3D. Image quality and resolution could be sustained to a level allowing for capturing the root system in high detail. Good signal-to-noise ratio and contrast were the key to visualize dynamic changes in water content and to localize the root uptake. We demonstrated the ability of ultra-fast tomography to quantitatively image quick changes of water content in the rhizosphere and outlined the value of such imaging data for 3D water uptake modelling. The presented method paves the way for time-resolved studies of various 3D flow and transport phenomena in porous systems.}, language = {en} } @misc{ToetzkeKardjilovMankeetal.2017, author = {T{\"o}tzke, Christian and Kardjilov, Nikolay and Manke, Ingo and Oswald, Sascha}, title = {Capturing 3D Water Flow in Rooted Soil by Ultra-fast Neutron Tomography}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402237}, pages = {9}, year = {2017}, abstract = {Water infiltration in soil is not only affected by the inherent heterogeneities of soil, but even more by the interaction with plant roots and their water uptake. Neutron tomography is a unique non-invasive 3D tool to visualize plant root systems together with the soil water distribution in situ. So far, acquisition times in the range of hours have been the major limitation for imaging 3D water dynamics. Implementing an alternative acquisition procedure we boosted the speed of acquisition capturing an entire tomogram within 10 s. This allows, for the first time, tracking of a water front ascending in a rooted soil column upon infiltration of deuterated water time-resolved in 3D. Image quality and resolution could be sustained to a level allowing for capturing the root system in high detail. Good signal-to-noise ratio and contrast were the key to visualize dynamic changes in water content and to localize the root uptake. We demonstrated the ability of ultra-fast tomography to quantitatively image quick changes of water content in the rhizosphere and outlined the value of such imaging data for 3D water uptake modelling. The presented method paves the way for time-resolved studies of various 3D flow and transport phenomena in porous systems}, language = {en} } @article{ToetzkeKardjilovMankeetal.2017, author = {T{\"o}tzke, Christian and Kardjilov, Nikolay and Manke, Ingo and Oswald, Sascha}, title = {Capturing 3D Water Flow in Rooted Soil by Ultra-fast Neutron Tomography}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-06046-w}, year = {2017}, abstract = {Water infiltration in soil is not only affected by the inherent heterogeneities of soil, but even more by the interaction with plant roots and their water uptake. Neutron tomography is a unique non-invasive 3D tool to visualize plant root systems together with the soil water distribution in situ. So far, acquisition times in the range of hours have been the major limitation for imaging 3D water dynamics. Implementing an alternative acquisition procedure we boosted the speed of acquisition capturing an entire tomogram within 10 s. This allows, for the first time, tracking of a water front ascending in a rooted soil column upon infiltration of deuterated water time-resolved in 3D. Image quality and resolution could be sustained to a level allowing for capturing the root system in high detail. Good signal-to-noise ratio and contrast were the key to visualize dynamic changes in water content and to localize the root uptake. We demonstrated the ability of ultra-fast tomography to quantitatively image quick changes of water content in the rhizosphere and outlined the value of such imaging data for 3D water uptake modelling. The presented method paves the way for time-resolved studies of various 3D flow and transport phenomena in porous systems.}, language = {en} }