@phdthesis{Popp2007, author = {Popp, Alexander}, title = {An integrated modelling approach for sustainable management of semi-arid and arid rangelands}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15103}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The need to develop sustainable resource management strategies for semi-arid and arid rangelands is acute as non-adapted grazing strategies lead to irreversible environmental problems such as desertification and associated loss of economic support to society. In such vulnerable ecosystems, successful implementation of sustainable management strategies depends on well-founded under-standing of processes at different scales that underlay the complex system dynamic. There is ample evidence that, in contrast to traditional sectoral approaches, only interdisciplinary research does work for resolving problems in conservation and natural resource management. In this thesis I combined a range of modeling approaches that integrate different disciplines and spatial scales in order to contribute to basic guidelines for sustainable management of semi-arid and arid range-lands. Since water availability and livestock management are seen as most potent determinants for the dynamics of semi-arid and arid ecosystems I focused on (i) the interaction of ecological and hydro-logical processes and (ii) the effect of farming strategies. First, I developed a grid-based and small-scaled model simulating vegetation dynamics and inter-linked hydrological processes. The simulation results suggest that ecohydrological interactions gain importance in rangelands with ascending slope where vegetation cover serves to obstruct run-off and decreases evaporation from the soil. Disturbances like overgrazing influence these positive feedback mechanisms by affecting vegetation cover and composition. In the second part, I present a modeling approach that has the power to transfer and integrate ecological information from the small scale vegetation model to the landscape scale, most relevant for the conservation of biodiversity and sustainable management of natural resources. I combined techniques of stochastic modeling with remotely sensed data and GIS to investigate to which ex-tent spatial interactions, like the movement of surface water by run-off in water limited environments, affect ecosystem functioning at the landscape scale. My simulation experiments show that overgrazing decreases the number of vegetation patches that act as hydrological sinks and run-off increases. The results of both simulation models implicate that different vegetation types should not only be regarded as provider of forage production but also as regulator of ecosystem functioning. Vegetation patches with good cover of perennial vegetation are capable to catch and conserve surface run-off from degraded surrounding areas. Therefore, downstream out of the simulated system is prevented and efficient use of water resources is guaranteed at all times. This consequence also applies to commercial rotational grazing strategies for semi-arid and arid rangelands with ascending slope where non-degraded paddocks act as hydrological sinks. Finally, by the help of an integrated ecological-economic modeling approach, I analyzed the relevance of farmers' ecological knowledge for longterm functioning of semi-arid and arid grazing systems under current and future climatic conditions. The modeling approach consists of an ecological and an economic module and combines relevant processes on either level. Again, vegetation dynamics and forage productivity is derived by the small-scaled vegetation model. I showed that sustainable management of semi-arid and arid rangelands relies strongly on the farmers' knowledge on how the ecosystem works. Furthermore, my simulation results indicate that the projected lower annual rainfall due to climate change in combination with non-adapted grazing strategies adds an additional layer of risk to these ecosystems that are already prone to land degradation. All simulation models focus on the most essential factors and ignore specific details. Therefore, even though all simulation models are parameterized for a specific dwarf shrub savanna in arid southern Namibia, the conclusions drawn are applicable for semi-arid and arid rangelands in general.}, language = {en} } @article{PoppBlaumJeltsch2009, author = {Popp, Alexander and Blaum, Niels and Jeltsch, Florian}, title = {Ecohydrological feedback mechanisms in arid rangelands : simulating the impacts of topography and land use}, issn = {1439-1791}, doi = {10.1016/j.baae.2008.06.002}, year = {2009}, abstract = {The interaction between ecological and hydrological processes is particularly important in arid and semi-arid regions. Often the interaction between these processes is not completely understood and they are studied separately. We developed a grid-based computer model simulating the dynamics of the four most common vegetation types (perennial grass, annuals, dwarf shrubs and shrubs) and related hydrological processes in the region studied. Eco-hydrological interactions gain importance in rangelands with increasing slope, where vegetation cover obstructs run-off and decreases evaporation from the soil. Overgrazing can influence these positive feedback mechanisms. In this study, we first show that model predictions of cover and productivity of the vegetation types are realistic by comparing them with estimates obtained from field surveys. Then, we apply a realistic range in slope angle combined with two land use regimes (light versus heavy grazing intensity). Our simulation results reveal that hydrological processes and associated productivity are strongly affected by slope, whereas the magnitude of this impact depends on overgrazing. Under low stocking rates, undisturbed vegetation is maintained and run-off and evaporation remain low on flat plains and gentle slope. On steep slopes, run-off and evaporation become larger, while water retention potential decreases, which leads to reduced productivity. Overgrazing, however, reduces vegetation cover and biomass production and the landscape"s ability to conserve water decreases even on flat plains and gentle slopes. Generally, the abundance of perennial grasses and shrubs decreases with increasing slope and grazing. Dominance is shifted towards shrubs and annuals. As a management recommendation we suggest that different vegetation growth forms should not only be regarded as forage producers but also as regulators of ecosystem functioning. Particularly on sloping range lands, a high percentage of cover by perennial vegetation insures that water is retained in the system.}, language = {en} } @inproceedings{PoppBlaumDomptailetal.2006, author = {Popp, Alexander and Blaum, Niels and Domptail, Stephanie and Herpel, Nicole and Gr{\"o}ngr{\"o}ft, Alexander and Hoffman, T. T. and J{\"u}rgens, Norbert and Milton, Sue and Nuppenau, Ernst-August and Rossmanith, Eva and Schmidt, Michael and Vogel, Melanie and Vohland, Katrin and Jeltsch, Florian}, title = {From satellite imagery to soil-plant interactions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7302}, year = {2006}, abstract = {Decisions for the conservation of biodiversity and sustainable management of natural resources are typically related to large scales, i.e. the landscape level. However, understanding and predicting the effects of land use and climate change on scales relevant for decision-making requires to include both, large scale vegetation dynamics and small scale processes, such as soil-plant interactions. Integrating the results of multiple BIOTA subprojects enabled us to include necessary data of soil science, botany, socio-economics and remote sensing into a high resolution, process-based and spatially-explicit model. Using an example from a sustainably-used research farm and a communally used and degraded farming area in semiarid southern Namibia we show the power of simulation models as a tool to integrate processes across disciplines and scales.}, language = {en} } @article{PoppDomptailBlaumetal.2009, author = {Popp, Alexander and Domptail, Stephanie and Blaum, Niels and Jeltsch, Florian}, title = {Landuse experience does not qualify for adaptation to climate change}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2008.11.015}, year = {2009}, abstract = {The need to implement sustainable resource management regimes for semi-arid and arid rangelands is acute as non- adapted grazing strategies lead to irreversible environmental problems such as desertification and associated loss of economic support to society. In these sensitive ecosystems, traditional sectoral, disciplinary approaches will not work to attain sustainability: achieving a collective vision of how to attain sustainability requires interactive efforts among disciplines in a more integrated approach. Therefore, we developed an integrated ecological-economic approach that consists of an ecological and an economic module and combines relevant processes on either level. Parameters for both modules are adjusted for an arid dwarf shrub savannah in southern Namibia. The economic module is used to analyse decisions of different virtual farmer types on annual stocking rates depending on their knowledge how the ecosystem works and climatic conditions. We used a dynamic linear optimisation model to simulate farm economics and livestock dynamics. The ecological module is used to simulate the impact of the farmers' land-use decision, derived by the economic module, on ecosystem dynamics and resulting carrying capacity of the system for livestock. Vegetation dynamics, based on the concept of State-and-transition models, and forage productivity for both modules is derived by a small- scale and spatially explicit vegetation model. This mechanistic approach guarantees that data collected and processes estimated at smaller scales are included in our application. Simulation results of the ecological module were successfully compared to simulation results of the optimisation model for a time series of 30 years. We revealed that sustainable management of semi-arid and arid rangelands relies strongly on rangeland managers' understanding of ecological processes. Furthermore, our simulation results demonstrate that the projected lower annual rainfall due to climate change adds an additional layer of risk to these ecosystems that are already prone to land degradation.}, language = {en} } @article{PoppVogelBlaumetal.2009, author = {Popp, Alexander and Vogel, Melanie and Blaum, Niels and Jeltsch, Florian}, title = {Scaling up ecohydrological processes : role of surface water flow in water-limited landscapes}, issn = {0148-0227}, doi = {10.1029/2008jg000910}, year = {2009}, abstract = {In this study, we present a stochastic landscape modeling approach that has the power to transfer and integrate existing information on vegetation dynamics and hydrological processes from the small scale to the landscape scale. To include microscale processes like ecohydrological feedback mechanisms and spatial exchange like surface water flow, we derive transition probabilities from a fine-scale simulation model. We applied two versions of the landscape model, one that includes and one that disregards spatial exchange of water to the situation of a sustainably used research farm and communally used and degraded rangeland in semiarid Namibia. Our simulation experiments show that including spatial exchange of overland flow among vegetation patches into our model is a precondition to reproduce vegetation dynamics, composition, and productivity, as well as hydrological processes at the landscape scale. In the model version that includes spatial exchange of water, biomass production at light grazing intensities increases 2.24-fold compared to the model without overland flow. In contrast, overgrazing destabilizes positive feedbacks through vegetation and hydrology and decreases the number of hydrological sinks in the model with overland flow. The buffer capacity of these hydrological sinks disappears and runoff increases. Here, both models predicted runoff losses from the system and artificial droughts occurring even in years with good precipitation. Overall, our study reveals that a thorough understanding of overland flow is an important precondition for improving the management of semiarid and arid rangelands with distinct topography.}, language = {en} } @inproceedings{RossmanithBlaumKeiletal.2006, author = {Rossmanith, Eva and Blaum, Niels and Keil, Manfred and Langerwisch, F. and Meyer, Jork and Popp, Alexander and Schmidt, Michael and Schultz, Christoph and Schwager, Monika and Vogel, Melanie and Wasiolka, Bernd and Jeltsch, Florian}, title = {Scaling up local population dynamics to regional scales}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7320}, year = {2006}, abstract = {In semi-arid savannas, unsustainable land use can lead to degradation of entire landscapes, e.g. in the form of shrub encroachment. This leads to habitat loss and is assumed to reduce species diversity. In BIOTA phase 1, we investigated the effects of land use on population dynamics on farm scale. In phase 2 we scale up to consider the whole regional landscape consisting of a diverse mosaic of farms with different historic and present land use intensities. This mosaic creates a heterogeneous, dynamic pattern of structural diversity at a large spatial scale. Understanding how the region-wide dynamic land use pattern affects the abundance of animal and plant species requires the integration of processes on large as well as on small spatial scales. In our multidisciplinary approach, we integrate information from remote sensing, genetic and ecological field studies as well as small scale process models in a dynamic region-wide simulation tool.
Interdisziplin{\"a}res Zentrum f{\"u}r Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006.}, language = {en} }