@article{GonzalezFortesKolbeFernandesetal.2016, author = {Gonz{\´a}lez-Fortes, Gloria M. and Kolbe, Ben and Fernandes, Daniel and Meleg, Ioana N. and Garcia-Vazquez, Ana and Pinto-Llona, Ana C. and Constantin, Silviu and de Torres, Trino J. and Ortiz, Jose E. and Frischauf, Christine and Rabeder, Gernot and Hofreiter, Michael and Barlow, Axel}, title = {Ancient DNA reveals differences in behaviour and sociality between brown bears and extinct cave bears}, series = {Molecular ecology}, volume = {25}, journal = {Molecular ecology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.13800}, pages = {4907 -- 4918}, year = {2016}, abstract = {Ancient DNA studies have revolutionized the study of extinct species and populations, providing insights on phylogeny, phylogeography, admixture and demographic history. However, inferences on behaviour and sociality have been far less frequent. Here, we investigate the complete mitochondrial genomes of extinct Late Pleistocene cave bears and middle Holocene brown bears that each inhabited multiple geographically proximate caves in northern Spain. In cave bears, we find that, although most caves were occupied simultaneously, each cave almost exclusively contains a unique lineage of closely related haplotypes. This remarkable pattern suggests extreme fidelity to their birth site in cave bears, best described as homing behaviour, and that cave bears formed stable maternal social groups at least for hibernation. In contrast, brown bears do not show any strong association of mitochondrial lineage and cave, suggesting that these two closely related species differed in aspects of their behaviour and sociality. This difference is likely to have contributed to cave bear extinction, which occurred at a time in which competition for caves between bears and humans was likely intense and the ability to rapidly colonize new hibernation sites would have been crucial for the survival of a species so dependent on caves for hibernation as cave bears. Our study demonstrates the potential of ancient DNA to uncover patterns of behaviour and sociality in ancient species and populations, even those that went extinct many tens of thousands of years ago.}, language = {en} } @article{ChangKnappEnketal.2017, author = {Chang, Dan and Knapp, Michael and Enk, Jacob and Lippold, Sebastian and Kircher, Martin and Lister, Adrian M. and MacPhee, Ross D. E. and Widga, Christopher and Czechowski, Paul and Sommer, Robert and Hodges, Emily and St{\"u}mpel, Nikolaus and Barnes, Ian and Dal{\´e}n, Love and Derevianko, Anatoly and Germonpr{\´e}, Mietje and Hillebrand-Voiculescu, Alexandra and Constantin, Silviu and Kuznetsova, Tatyana and Mol, Dick and Rathgeber, Thomas and Rosendahl, Wilfried and Tikhonov, Alexey N. and Willerslev, Eske and Hannon, Greg and Lalueza i Fox, Carles and Joger, Ulrich and Poinar, Hendrik N. and Hofreiter, Michael and Shapiro, Beth}, title = {The evolutionary and phylogeographic history of woolly mammoths}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep44585}, pages = {10}, year = {2017}, abstract = {Near the end of the Pleistocene epoch, populations of the woolly mammoth (Mammuthus primigenius) were distributed across parts of three continents, from western Europe and northern Asia through Beringia to the Atlantic seaboard of North America. Nonetheless, questions about the connectivity and temporal continuity of mammoth populations and species remain unanswered. We use a combination of targeted enrichment and high-throughput sequencing to assemble and interpret a data set of 143 mammoth mitochondrial genomes, sampled from fossils recovered from across their Holarctic range. Our dataset includes 54 previously unpublished mitochondrial genomes and significantly increases the coverage of the Eurasian range of the species. The resulting global phylogeny confirms that the Late Pleistocene mammoth population comprised three distinct mitochondrial lineages that began to diverge ~1.0-2.0 million years ago (Ma). We also find that mammoth mitochondrial lineages were strongly geographically partitioned throughout the Pleistocene. In combination, our genetic results and the pattern of morphological variation in time and space suggest that male-mediated gene flow, rather than large-scale dispersals, was important in the Pleistocene evolutionary history of mammoths.}, language = {en} }