@article{MummCzernitzkiBentsetal.2017, author = {Mumm, Rebekka and Czernitzki, Anna-Franziska and Bents, Dominik and Musalek, Martin}, title = {Socioeconomic situation and growth in infants and juveniles}, series = {Anthropologischer Anzeiger : journal of biological and clinical anthropology ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, volume = {74}, journal = {Anthropologischer Anzeiger : journal of biological and clinical anthropology ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2017/0706}, pages = {101 -- 107}, year = {2017}, abstract = {Background: Physical growth of children and adolescents depends on the interaction of genetic and environmental factors e.g. diet and living conditions. Aim: We aim to discuss the influence of socioeconomic situation, using income inequality and GDP per capita as indicators, on body height, body weight and the variability of height and weight in infants and juveniles. Material and methods: We re-analyzed data from 439 growth studies on height and weight published during the last 35 years. We added year-and country-matched GDP per capita (in current US\$) and the Gini coefficient for each study. The data were divided into two age groups: infants (age 2) and juveniles (age 7). We used Pearson correlation and principal component analysis to investigate the data. Results: Gini coefficient negatively correlated with body height and body weight in infants and juveniles. GDP per capita showed a positive correlation with height and weight in both age groups. In infants the standard deviation of height increases with increasing Gini coefficient. The opposite is true for juveniles. A correlation of weight variability and socioeconomic indicators is absent in infants. In juveniles the variability of weight increases with declining Gini coefficient and increasing logGDP per capita. Discussion: Poverty and income inequality are generally associated with poor growth in height and weight. The analysis of the within-population height and weight variations however, shows that the associations between wealth, income, and anthropometric parameters are very complex and cannot be explained by common wisdom. They point towards an independent regulation of height and weight.}, language = {en} } @article{BentsRybakGroth2017, author = {Bents, Dominik and Rybak, Alexander and Groth, Detlef}, title = {Spatial conscript body height correlation of Norwegian districts in the 19th century}, series = {Anthropologischer Anzeiger : journal of biological and clinical anthropology ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, volume = {74}, journal = {Anthropologischer Anzeiger : journal of biological and clinical anthropology ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, number = {1}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2017/0700}, pages = {65 -- 69}, year = {2017}, abstract = {Background: We investigated height of Norwegian conscripts in view of the hypothesis of a "community effect on height" using autocorrelation analysis of district heights within a time-span of 20 years at the end of the 19th century and correlations between neighboring districts at this time. Material and methods: After digitalizing available body height data of Norwegian draftees in 1877-1878, 1880 (averaged as 1878), and 1895-1897 (averaged as 1896) we calculated the magnitude of autocorrelation of body height within the same municipality at different time points. Furthermore, we generated three different neighborhood networks, (1) based on Euclidean distances, (2) a minimum spanning tree build on those distances, (3) a network founded on real world road connections. The networks were used to determine the correlation between body height of neighboring districts depending on the number of edges required to connect two municipalities. Results: The autocorrelation value for body heights was around r = 0.5 (for all p < 0.001) in the years 1878 and 1896. The correlation between neighboring districts varied in the Euclidean distance based network between 0.47 and 0.27 approximately for both years in a sorted order, descending from nearest (0-50 km) to farthest (150-200 km, for all p < 0.001). First order neighbors in the minimum spanning tree network correlation was 0.36 in 1878 and 0.42 in 1896 (for all p < 0.001). The values of neighbor correlation in the road connection based network ranged in 1878 from 0.42 (first order neighbors) to 0.17 (forth order neighbors, for all p < 0.01) and in 1896 from 0.46 (first order neighbors) to 0.12 (forth order neighbors, for all p < 0.05). Conclusion: This initial study of Norwegian conscript height data from the 19th century showed significant medium sized effects for the within district autocorrelation between 1878 and 1896 as well as medium neighborhood correlation, slightly lower in comparison to a recent study regarding Swiss conscripts. Digitalizing more data from other years in this and later time spans as well as using older road and ship connections instead of the actual road data might stabilize and improve those findings.}, language = {en} } @article{RybakBentsKruegeretal.2020, author = {Rybak, Alexander and Bents, Dominik and Kr{\"u}ger, Johanna and Groth, Detlef}, title = {The end of the secular trend in Norway}, series = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, volume = {77}, journal = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, number = {5}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2020/1254}, pages = {415 -- 421}, year = {2020}, abstract = {Aim: We aimed to examine the distribution and secular changes of conscript body height in the geographic network of Norway since 1878 and to study its association with the degree of urbanization, and population density. Material and methods: Data on body height of Norwegian military conscripts were provided by the Statistics Norway Department (SSB). The sample comprised eight cohorts with the following measurement years: 1st 1877, 1878 and 1880, 2nd 18951897, 3rd 1915-1917, 4th 1935-1937, 5th 1955-1957, 6th 1975-1977, 7th 1995-1997, and 8th 2009-2011. For determining neighborhood correlations, a network was created consisting of neighboring counties, sharing a common border. Results: Average body height of Norwegian men increased by 10.9 cm between 1878 and 2010, but this trend was heterogeneous. Some counties increased by more than 1 cm per decade (Finmark) others by only 7 mm per decade (Sor-Trondelag). Urban counties and counties with higher population density showed stronger height trends than rural counties. The largest spread in body height between the various counties was observed in 1936 when for the first time people living in the more urban counties got taller than rural people. The height advantage of urban counties however, disappeared after 1996. At this time, also the secular trend in height had come to a halt. The secular trend in height had become obvious after the dissolution of the union between Norway and Sweden in 1905 and World War I, and was strongest between 1936 and 1956. During this period maximum between-county heterogeneity in height existed with body height differences of more than 6 cm between the tallest and the shortest county. The end of this period was characterized by social democratic reforms that flattened the income distribution, eliminated poverty, and ensured social services after World War II. Conclusion: The temporal coincidence between the trends in height, the degree of urbanization and the onset of the political transition of Norway from a Swedish province into an independent democratic wealthy modern European state after World War I and particularly after World War II, and the abatement of this trend after this period of transition had stabilized, suggest social and political components interfering with the regulation of physical growth in humans.}, language = {en} } @article{BentsGrothSatake2018, author = {Bents, Dominik and Groth, Detlef and Satake, Takashi}, title = {The secular trend and network effects on height of male Japanese students from 1955 to 2015}, series = {Journal of biological and clinical anthropology}, volume = {74}, journal = {Journal of biological and clinical anthropology}, number = {5}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2018/0838}, pages = {423 -- 429}, year = {2018}, abstract = {Introduction: Body height is influenced by biological factors such as genetics, nutrition and health, but also by the social network, and environmental and economical factors. During centuries, the Japanese society has developed on islands. This setting provides ideal natural conditions for studying the influence of social networks on human height. Material and methods: We investigated body height of male Japanese students aged 17.5 years obtained in 47 prefectures, from the Japanese school health survey of the years 1955, 1975, 1995, and 2015. Results: Japanese students increased in height from 163.23 cm in 1955 to 170.84 cm in 1995, with no further increase thereafter (170.63 cm in 2015). Students living in neighboring prefectures were similar in height. The correlation of height between neighboring prefectures ranged between r = 0.79 and r = 0.49 among first degree neighbors, between r = 0.49 and r = 0.21 among second degree neighbors and dropped to insignificance among third degree neighbors indicating psychosocial effects of the community on body height. Tall stature and short stature prefectures did not remain tall or short throughout history. Autocorrelations of height within the same prefectures decreased from the 20 years periods of 1955-1975, 1975-1995 and 1995-2015 (r = 0.52, r = 0.61, r = 0.63, respectively) to the 40 years periods of 1955-1995 and 1975-2015 (r = 0.49, r = 0.52), down to the 60 years period of 1955-2015 (r = 0.27), indicating significant volatility of height. Conclusion: Body height of 17.5 years old Japanese students increased since 1955. Body height depended on height of the neighboring prefecture, but was volatile with decreasing autocorrelation during a period of 60 years.}, language = {en} }