@article{WilligvonReppertDebetal.2019, author = {Willig, Lisa and von Reppert, Alexander and Deb, Marwan and Ganss, F. and Hellwig, O. and Bargheer, Matias}, title = {Finite-size effects in ultrafast remagnetization dynamics of FePt}, series = {Physical review : B, Condensed matter and materials physics}, volume = {100}, journal = {Physical review : B, Condensed matter and materials physics}, number = {22}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.100.224408}, pages = {6}, year = {2019}, abstract = {We investigate the ultrafast magnetization dynamics of FePt in the L1(0) phase after an optical heating pulse, as used in heat-assisted magnetic recording. We compare continuous and nano-granular thin films and emphasize the impact of the finite size on the remagnetization dynamics. The remagnetization speeds up significantly with increasing external magnetic field only for the continuous film, where domain-wall motion governs the dynamics. The ultrafast remagnetization dynamics in the continuous film are only dominated by heat transport in the regime of high magnetic fields, whereas the timescale required for cooling is prevalent in the granular film for all magnetic field strengths. These findings highlight the necessary conditions for studying the intrinsic heat transport properties in magnetic materials.}, language = {en} }