@phdthesis{Kanehira2023, author = {Kanehira, Yuya}, title = {Versatile DNA origami based SERS substrates for spectroscopic applications}, pages = {115}, year = {2023}, language = {en} } @phdthesis{Stechemesser2023, author = {Stechemesser, Annika}, title = {Human behaviour in a warming world}, school = {Universit{\"a}t Potsdam}, pages = {339}, year = {2023}, language = {en} } @phdthesis{Bastian2023, author = {Bastian, Martin}, title = {An emergent machine learning approach for seasonal cyclone activity forecasts}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2023}, abstract = {Seasonal forecasts are of great interest in many areas. Knowing the amount of precipitation for the upcoming season in regions of water scarcity would facilitate a better water management. If farmers knew the weather conditions of the upcoming summer at sowing time, they could select those cereal species that are best adapted to these conditions. This would allow farmers to improve the harvest and potentially even reduce the amount of pesticides used. However, the undoubted advantages of seasonal forecasts are often opposed by their high degree of uncertainty. The great challenge of generating seasonal forecasts with lead times of several months mainly originates from the chaotic nature of the earth system. In a chaotic system, even tiny differences in the initial conditions can lead to strong deviations in the system's state in the long run. In this dissertation we propose an emergent machine learning approach for seasonal forecasting, called the AnlgModel. The AnlgModel combines the analogue method with myopic feature selection and bootstrapping. To benchmark the abilities of the AnlgModel we apply it to seasonal cyclone activity forecasts in the North Atlantic and Northwest Pacific. The AnlgModel demonstrates competitive hindcast skills with two operational forecasts and even outperforms these for long lead times. In the second chapter we comprehend the forecasting strategy of the Anlg-Model. We thereby analyse the analogue selection process for the 2017 North Atlantic and the 2018 Northwest Pacific seasonal cyclone activity. The analysis shows that those climate indices which are known to influence the seasonal cyclone activity, such as the Ni{\~n}o 3.4 SST, are correctly represented among the selected analogues. Furthermore the selected analogues reflect large-scale climate patterns that were identified by expert reports as being determinative for these particular seasons. In the third chapter we analyse the features that are used by the AnlgModel for its predictions. We therefore inspect the feature relevance (FR). The FR patterns learned by the AnlgModel show a high congruence with the predictor regions used by the operational forecasts. However, the AnlgModel also discovered new features, such as the SST anomaly in the Gulf of Guinea during November. This SST pattern exhibits a remarkably high predictive potential for the upcoming Atlantic hurricane activity. In the final chapter we investigate potential mechanisms, that link two of these regions with high feature relevance to the Atlantic hurricane activity. We mainly focus on ocean surface transport. The ocean surface flow paths are calculated using Lagrangian particle analysis. We demonstrate that the FR patterns in the region of the Canary islands do not correspond with ocean surface transport. It is instead likely that these FR patterns fingerprint a wind transport of latent heat. The second region to be studied is situated in the Gulf of Guinea. Our analysis shows that the FR patterns seen there do fingerprint ocean surface transport. However, our simulations also show that at least one other mechanism is involved in linking the Gulf of Guinea SST anomaly in November to the hurricane activity of the upcoming season. In this work the AnlgModel does not only demonstrate its outstanding forecast skills but also shows its capabilities as research tool for detecting oceanic and atmospheric mechanisms.}, language = {en} } @phdthesis{Sharma2023, author = {Sharma, Anjali}, title = {Optical manipulation of multi-responsive microgels}, school = {Universit{\"a}t Potsdam}, pages = {207}, year = {2023}, abstract = {This dissertation focuses on the understanding of the optical manipulation of microgels dispersed in aqueous solution of azobenzene containing surfactant. The work consists of three parts where each part is a systematic investigation of the (1) photo-isomerization kinetics of the surfactant in complex with the microgel polymer matrix, (2) light driven diffusiosmosis (LDDO) in microgels and (3) photo-responsivity of microgel on complexation with spiropyran. The first part comprises three publications where the first one [P1] investigates the photo-isomerization kinetics and corresponding isomer composition at a photo-stationary state of the photo-sensitive surfactant conjugated with charged polymers or micro sized polymer networks to understand the structural response of such photo-sensitive complexes. We report that the photo-isomerization of the azobenzene-containing cationic surfactant is slower in a polymer complex compared to being purely dissolved in an aqueous solution. The surfactant aggregates near the polyelectrolyte chains at concentrations much lower than the bulk critical micelle concentration. This, along with the inhibition of the photo-isomerization kinetics due to steric hindrance within the densely packed aggregates, pushes the isomer-ratio to a higher trans-isomer concentration for all irradiation wavelengths. The second publication [P2] combines experimental results and non-adiabatic dynamic simulations for the same surfactant molecules embedded in the micelles with absorption spectroscopy measurements of micellar solutions to uncover the reasons responsible for the slowdown in photo induced trans → cis azobenzene isomerization at concentrations higher than the critical micelle concentration (CMC). The simulations reveal a decrease of isomerization quantum yields for molecules inside the micelles and observes a reduction of extinction coefficients upon micellization. These findings explain the deceleration of the trans → cis switching in micelles of the azobenzene-containing surfactants. Finally, the third publication [P3] focusses on the kinetics of adsorption and desorption of the same surfactant within anionic microgels in the dark and under continuous irradiation. Experimental data demonstrate, that microgels can serve as a selective absorber of the trans isomers. The interaction of the isomers with the gel matrix induces a remotely controllable collapse or swelling on appropriate irradiation wavelengths. Measuring the kinetics of the microgel size response and knowing the exact isomer composition under light exposure, we calculate the adsorption rate of the trans-isomers. The second part comprises two publications. The first publication [P4] reports on the phenomenon of light-driven diffusioosmotic (DO) long-range attractive and repulsive interactions between micro-sized objects, whose range extends several times the size of microparticles and can be adjusted to point towards or away from the particle by varying irradiation parameters such as intensity or wavelength of light. The phenomenon is fueled by the aforementioned photosensitive surfactant. The complex interaction of dynamic exchange of isomers and photo-isomerization rate yields to relative concentrations gradients of the isomers in the vicinity of micro-sized object inducing a local diffusioosmotic (DO) flow thereby making a surface act as a micropump. The second publication [P5] exclusively aims the visualization and investigation of the DO flows generated from microgels by using small tracer particles. Similar to micro sized objects, the flow is able to push adjacent tracers over distances several times larger than microgel size. Here we report that the direction and the strength of the l-LDDO depends on the intensity, irradiation wavelength and the amount of surfactant adsorbed by the microgel. For example, the flow pattern around a microgel is directed radially outward and can be maintained quasi-indefinitely under exposure at 455 nm when the trans:cis ratio is 2:1, whereas irradiation at 365 nm, generates a radially transient flow pattern, which inverts at lower intensities. Lastly, the third part consists of one publication [P6] which, unlike the previous works, reports on the study of the kinetics of photo- and thermo-switching of a new surfactant namely, spiropyran, upon exposure with light of different wavelengths and its interaction with p(NIPAM-AA) microgels. The surfactant being an amphiphile, switches between its ring closed spiropyran (SP) form and ring open merocyanine (MC) form which results in a change in the hydrophilic-hydrophobic balance of the surfactant as MC being a zwitterionic form along with the charged head group, generates three charges on the molecule. Therefore, the MC form of the surfactant is more hydrophilic than in the case of the neutral SP state. Here, we investigate the initial shrinkage of the gel particles via charge compensation on first exposure to SP molecules which results from the complex formation of the molecules with the gel matrix, triggering them to become photo responsive. The size and VPTT of the microgels during irradiation is shown to be a combination of heating up of the solution during light absorption by the surfactant (more pronounced in the case of UV irradiation) and the change in the hydrophobicity of the surfactant.}, language = {en} } @phdthesis{Sajedi2023, author = {Sajedi, Maryam}, title = {Investigation of metal-halide-perovskites by state-of-the-art synchrotron-radiation methods}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 149}, year = {2023}, abstract = {My thesis chiefly aims to shed light on the favourable properties of LHP semiconductors from the point of view of their electronic structure. Currently, various hypotheses are circulating to explain the exceptionally favourable transport properties of LHPs. Seeking an explanation for the low non-radiative recombination rates and long carrier lifetimes is particularly interesting to the halide perovskites research community. The first part of this work investigates the two main hypotheses that are believed to play a significant role: the existence of a giant Rashba effect and large polarons. The experimental method of ARPES is mainly applied to verify their credibility. The first hypothesis presumes that a giant Rashba effect restricts the recombination losses of the charge carriers by making the band gap slightly indirect. The Rashba effect is based on a strong SOC that could appear in LHPs thanks to incorporating the heavy element Pb in their structure. Earlier experimental work had pointed out this effect at the VBM of a hybrid LHP as a viable explanation for the long lifetimes of the charge carriers. My systematic ARPES studies on hybrid MAPbBr3 and spin-resolved ARPES studies on the inorganic CsPbBr3 disprove the presence of any Rashba effect in the VBM of the reported order of magnitude. Therefore, neither the spin texture nor an indirect band gap character at the VBM in the bulk or at the surface can explain the high efficiency of LHP. In case of existence, this effect is in terms of the Rashba parameter at least a factor of a hundred smaller than previously assumed. The second hypothesis proposes large polaron formation in the electronic structure of LHPs and attributes it to their high defect tolerance and low non-radiative recombination rate. Because the perovskite structure consists of negative and positive ions, polarons of this kind can be expected due to the Coulomb interaction between carriers and the polar lattice at intermediate electron-phonon coupling strength. Their existence is proposed to screen the carriers and defects to avoid recombination and trapping, thus leading to long carrier lifetimes. ARPES results by one group supported this assumption, reporting a 50\% effective mass enhancement over the theoretical effective mass for CsPbBr3 in the orthorhombic structure. The current thesis examines this hypothesis experimentally by photon-energy-dependent ARPES spectra and theoretically by GW band calculations of CsPbBr3 perovskites. The investigation is based on the fact that a polaron contribution in charge transport can become evident by an increase of the effective mass as measured by ARPES over the calculated one without polaron effects. However, my experiments on crystalline CsPbBr3 did not imply a larger effective mass for which one could postulate large polarons. In fact, the effective masses determined from ARPES agree with that of theoretical predictions. The second part of my thesis thoroughly investigates the possibility of spontaneously magnetizing LHPs by introducing Mn2+ ions. Mn doping was reported to cause ferromagnetism in one of the most common LHPs, MAPbI3, mediated by super-exchange. The current work investigates the magnetic properties of a wide concentration range of Mn-doped MAPbI3 and triple-cation films by XAS, XMCD, and SQUID measurements. Based on the XAS line shape and a sum-rule analysis of the XMCD spectra, a pure Mn2+ configuration has been confirmed. Negative Curie temperatures are extracted from fitting the magnetization with a Curie-Weiss law. However, a remanent magnetization, which would be an indication of the absence of ferromagnetism down to 2K. As far as the double exchange is concerned, the element-specific XAS excludes a sufficient amount of Mn3+ as a prerequisite for this mechanism. All the findings show no evidence of significant double exchange or ferromagnetism in Mn-doped LHPs. The magnetic behavior is paramagnetic rather than ferromagnetic. In the dissertation's last chapter, orthorhombic features of CsPbBr3 are revealed by ARPES, including an extra VBM at the Γ-point. The VBM of CsPbBr3 shows a temperature-dependent splitting, which decreases by 190 meV between 38K and 300K and tracks a shift of a saddle point at the cubic M-point. It is possible to reproduce the energy shift using an atomic model with a larger unit cell for room temperature, allowing local inversion symmetry breaking. This indicates the importance of electric dipoles for the inorganic LHPs, which may contribute to their high efficiency by breaking inversion symmetry and a Berry-phase effect.}, language = {en} } @phdthesis{Valade2023, author = {Valade, Aurelien Niels Valentin}, title = {Unveiling the Local Universe}, school = {Universit{\"a}t Potsdam}, pages = {X, 102}, year = {2023}, language = {en} } @phdthesis{Kairaliyeva2023, author = {Kairaliyeva, Talmira}, title = {Surfactant adorption at liquid interfaces measured by drop and bubble experiments}, school = {Universit{\"a}t Potsdam}, pages = {VII, 117}, year = {2023}, language = {en} } @phdthesis{Kotz2022, author = {Kotz, Maximilian}, title = {The economic costs of climate change}, school = {Universit{\"a}t Potsdam}, pages = {279}, year = {2022}, language = {en} } @phdthesis{Dixit2023, author = {Dixit, Sneha}, title = {Tension-induced conformational changes of the Piezo protein-membrane nano-dome}, school = {Universit{\"a}t Potsdam}, pages = {94}, year = {2023}, abstract = {Mechanosensation is a fundamental biological process that provides the basis for sensing touch and pain as well as for hearing and proprioception. A special class of ion-channel proteins known as mechanosensitive proteins convert the mechanical stimuli into electrochemical signals to mediate this process. Mechanosensitive proteins undergo conformational changes in response to mechanical force, which eventually leads to the opening of the proteins' ion channel. Mammalian mechanosensitive proteins remained a long sought-after mystery until 2010 when a family of two proteins - Piezo1 and Piezo2 - was identifed as mechanosensors [1]. The cryo-EM structures of Piezo1 and Piezo2 protein were resolved in the last years and reveal a propeller-shaped homotrimer with 114 transmembrane helices [2, 3, 4, 5]. The protein structures are curved and have been suggested to deform the surrounding membrane into a nano-dome, which mechanically responds to membrane tension resulting from external forces [2]. In this thesis, the conformations of membrane-embedded Piezo1 and Piezo2 proteins and their tension-induced conformational changes are investigated using molecular dynamics simulations. Our coarse-grained molecular dynamics simulations show that the Piezo proteins induce curvature in the surrounding membrane and form a stable protein-membrane nano-dome in the tensionless membrane. These membrane-embedded Piezo proteins, however, adopt substantially less curved conformations in our simulations compared to the cryo-EM structures solved in detergent micelles, which agrees with recent experimental investigations of the overall Piezo nano-dome shape in membrane vesicles [6, 7, 8]. At high membrane tension, the Piezo proteins attain nearly planar conformations in our simulations. Our systematic investigation of Piezo proteins under different membrane tensions indicates a half-maximal conformational response at membrane tension values rather close to the experimentally suggested values of Piezo activation [9, 10]. In addition, our simulations indicate a widening of the Piezo1 ion channel at high membrane tension, which agrees with the channel widening observed in recent nearly flattened cryo-EM structures of Piezo1 in small membrane vesicles [11]. In contrast, the Piezo2 ion channel does not respond to membrane tension in our simulations. These different responses of the Piezo1 and Piezo2 ion channels in our simulations are in line with patch-clamp experiments, in which Piezo1, but not Piezo2, was shown to be activated by membrane tension alone [12].}, language = {en} } @phdthesis{Piankova2022, author = {Piankova, Diana}, title = {Electron pair distribution function (ePDF) analysis and advanced transmission electron microscopy (TEM) techniques}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 146}, year = {2022}, language = {en} } @phdthesis{Stoll2022, author = {Stoll, Andreas}, title = {Advanced spectroscopic instruments enabled by integrated optics}, school = {Universit{\"a}t Potsdam}, pages = {97, XV}, year = {2022}, abstract = {The aim of this work is the study of silica Arrayed Waveguide Gratings (AWGs) in the context of applications in astronomy. The specific focus lies on the investigation of the feasibility and technology limits of customized silica AWG devices for high resolution near-infrared spectroscopy. In a series of theoretical and experimental studies, AWG devices of varying geometry, foot-print and spectral resolution are constructed, simulated using a combination of a numerical beam propagation method and Fraunhofer diffraction and fabricated devices are characterized with respect to transmission efficiency, spectral resolution and polarization sensitivity. The impact of effective index non-uniformities on the performance of high-resolution AWG devices is studied numerically. Characterization results of fabricated devices are used to extrapolate the technology limits of the silica platform. The important issues of waveguide birefringence and defocus aberration are discussed theoretically and addressed experimentally by selection of an appropriate aberration-minimizing anastigmatic AWG layout structure. The drawbacks of the anastigmatic AWG geometry are discussed theoretically. From the results of the experimental studies, it is concluded that fabrication-related phase errors and waveguide birefringence are the primary limiting factors for the growth of AWG spectral resolution. It is shown that, without post-processing, the spectral resolving power is phase-error-limited to R < 40, 000 and, in the case of unpolarized light, birefringence-limited to R < 30, 000 in the AWG devices presented in this work. Necessary measures, such as special waveguide geometries and post-fabrication phase error correction are proposed for future designs. The elimination of defocus aberration using an anastigmatic AWG geometry is successfully demonstrated in experiment. Finally, a novel, non-planar dispersive in-fibre waveguide structure is proposed, discussed and studied theoretically.}, language = {en} } @phdthesis{Spaeker2022, author = {Sp{\"a}ker, Oliver C.}, title = {Structure-property-function relationships in the cornea of Limulus polyphemus}, pages = {VIII, 110, A16}, year = {2022}, language = {en} } @phdthesis{Velk2022, author = {Velk, Natalia}, title = {Investigation of the interaction of lysozyme with poly(l-lysine)/hyaluronic acid multilayers}, school = {Universit{\"a}t Potsdam}, pages = {85}, year = {2022}, language = {en} } @phdthesis{Born2021, author = {Born, Artur}, title = {Electronic structure, quasi-particle interaction and relaxation in 3d-elements from X-ray spectroscopy}, school = {Universit{\"a}t Potsdam}, year = {2021}, language = {en} } @phdthesis{Born2021, author = {Born, Artur}, title = {Electronic structure, quasi-particle interaction and relaxation in 3d-elements from X-ray spectroscopy}, school = {Universit{\"a}t Potsdam}, pages = {123}, year = {2021}, abstract = {Any physical system can be described on the level of interacting particles, thus it is of fundamental importance to improve the scientific understanding of interacting many-body systems. This thesis experimentally addresses specific quasi-particle interactions, namely interactions be- tween electrons and between electrons and phonons. It describes the consequential effects of those processes on the electronic structure and the core-hole relaxation pathways in 3d metals. Despite the great amount of experimental and theoretical studies of these interactions and their impact on the behavior of solid-state matter, there are still open questions concerning the cor- responding physical, chemical and mechanical properties of solid-state matter. Especially, the study of 3d metals and their compounds is a great experimental challenge, since those exhibit a variety of spectral features originating from many-body effects such as multiplet splitting, shake up/off satellites, vibrationally excited states or more complex effects like superconductivity and ultrafast demagnetization. In X-ray spectroscopy, these effects often produce overlapping fea- tures, complicating the analysis and limiting the understanding. In this thesis, to overcome the limitations set by conventional X-ray spectroscopy, two different experimental approaches were successfully refined, namely Auger electron photoelectron coincidence spectroscopy (APECS) and temperature-dependent X-ray emission spectroscopy (tXES), which enabled the separation of different core-hole relaxation pathways and the isolation of the impact of specific many-body interactions in the experimental spectra. APECS was utilized at the new Coincidence electron spectroscopy for chemical analysis (Co- ESCA) station at BESSY II to study the core-hole decay and electron-correlation effects in single- crystal Ni, Cu and Co. The observation of photoelectrons in coincidence with Auger electrons allows for the separation of the initial and final state effects in the Auger electron spectra. The results show that a Cu LV V Auger spectrum can be represented by broadened atomic multiplets confirming the localized nature of the intermediate core-hole states. In contrast, the Co LV V Auger spectrum is band-like and can be represented by the self-convolution of the valence band. Ni behaves mixed, localized and itinerant. Thus, the Ni Auger spectrum can only be represented by a mixture of atomic multiplet peaks and the self-convoluted valence band. In the case of Ni, the LV V Auger electrons in coincidence with the 6 eV satellite photoelectrons were also stud- ied. Utilizing the core-hole clock method, the lifetime of the localized double-hole intermediate 2 p53d9 states of 1.8 fs could be determined. However, a fraction of these states delocalizes before the Auger decay contributing to the main peak. A similar delocalization was observed for the double-hole states produced by the L2L3M4,5 Coster-Kronig process. Additionally, the influence of surface oxidation on the Ni(111) 3p levels was studied with APECS. The Ni 3p PES spectrum is broad and featureless, due to overlapping many-body effects and gives little chance for exact analysis using conventional photoelectron spectroscopy. Utilizing APECS or precisely the final state selectivity of the method, the spectral width of the 3p levels could be narrowed and their positions and the spin-orbit splitting were determined. Moreover, due to the surface sensitivity of the method, the chemically shifted 3p photoelectron peaks originating from the oxidized surface and the bulk Ni were disentangled. For the study of the atomic electron-phonon spin-flip scattering in 3d metals as a spin-relaxation channel, the tXES method at the SolidFlexRIXS station was developed. The atomic spin-flip scat- tering was studied in single-crystal Ni, Cu, Co and in FeNi alloys, which show considerable dif- ferences in their behavior. The scattering rate in Ni increases with temperature, whereas the rate in Cu and Co remains constant within the measured temperature range up to 1000 K. In FeNi alloys, our results reveal that the spin-flip scattering is restricted by sublattice exchange energies J. The electron-phonon scattering driven spin-flips only appear in the case where the thermal energy ex- ceeds the exchange energy kT > J. This thresholding is an important microscopic process for the description of the sublattice dynamics in alloys, but as shown also relevant for elemental magnetic systems. Overall, the results strongly indicate that the spin-flip probability is correlated with the exchange energy, which might become an important parameter in the ultrafast demagnetization debate. Taken together, the applied experimental approaches allowed to study complex many-body effects in 3d metals. The results show that utilizing APECS enabled the distinction and clear assignment of otherwise overlapping features in AES or PES spectra of Ni, Cu, Co and NiO. This is of fundamental importance for the basic understanding of photoionization and core-hole decay processes but also for the chemical analysis in applied science. The measurement of the atomic electron-phonon spin-flip scattering rate utilizing tXES shows that the electron-phonon spin-flip scattering is a relevant atomic process for the macroscopic demagnetization process. Additionally, a temperature-dependent thresholding mechanism was discovered, which introduces an important dynamic factor into the electron-phonon spin-flip model.}, language = {en} } @phdthesis{Zhang2021, author = {Zhang, Heshou}, title = {Magnetic fields in the universe}, school = {Universit{\"a}t Potsdam}, pages = {vi, 107}, year = {2021}, abstract = {The galactic interstellar medium is magnetized and turbulent. The magnetic field and turbulence play important roles in many astrophysical mechanisms, including cosmic ray transport, star formation, etc. Therefore, measurements of magnetic field and turbulence information are crucial for the proper interpretation of astronomical observations. Nonetheless, the magnetic field observation is quite challenging, especially, there is not universal magnetic tracer for diffuse medium. Moreover, the modelling of turbulence can be oversimplified due to the lack of observational tools to diagnose the plasma properties of the turbulence in the galactic interstellar medium. The studies presented in this thesis have addressed these challenges by bridging the theoretical studies of magnetic field and turbulence with numerical simulations and observations. The following research are presented in this thesis. The first observational evidence of the novel magnetic tracer, ground state alignment (GSA), is discovered, revealing the three-dimensional magnetic field as well as 2 orders of magnitude higher precision comparing to previous observational study in the stellar atmosphere of the post-AGB 89 Herculis. Moreover, the application of GSA in the sub-millimeter fine-structure lines is comprehensively studied for different elements and with magnetohydrodynamic simulations. Furthermore, the influence of GSA effect on the spectroscopy is analyzed and it is found that measurable variation will be produced on the spectral line intensity and the line ratio without accounting for the optical pumping process or magnetic field. Additionally, a novel method to measure plasma modes in the interstellar medium, Signatures from Polarization Analysis (SPA), is proposed and applied to real observations. Magneto-sonic modes are discovered in different types of interstellar medium. An explanation is provided for the long-standing mystery, the origin of γ-ray enhanced emission "Cygnus Cocoon", based on the comparison between the outcome of SPA and multi-waveband observational data. These novel methods have strong potentials for broader observational applications and will play crucial roles in future multi-wavelength astronomy.}, language = {en} } @phdthesis{Dineva2021, author = {Dineva, Ekaterina}, title = {Sun-as-a-star Spectroscopy with PEPSI}, school = {Universit{\"a}t Potsdam}, pages = {108}, year = {2021}, language = {en} } @phdthesis{Keles2021, author = {Keles, Engin}, title = {Atmospheric properties and dynamics of gaseous exoplanets inferred from high-resolution alkali line transmission spectroscopy}, school = {Universit{\"a}t Potsdam}, year = {2021}, abstract = {The characterization of exoplanets applying high-resolution transmission spectroscopy ini- tiated a new era making it possible to trace atmospheric signature at high altitudes in exoplanet atmospheres and to determine atmospheric properties which enrich our under- standing of the formation and evolution of the solar system. In contrast to what is observed in our solar system, where gaseous planets orbit at wide orbits, Jupiter type exoplanets were detected in foreign stellar systems surrounding their host stars within few days, in close orbits, the so called hot- and ultra-hot Jupiters. The most well studied ones are HD209458b and HD189733b, which are the first exoplanets where absorption is detected in their atmospheres, namely from the alkali line sodium. For hot Jupiters, the resonant alkali lines are the atmospheric species with one of the strongest absorption signatures, due to their large absorption cross-section. However, al- though the alkali lines sodium and potassium were detected in low-resolution observations for various giant exoplanets, potassium was absent in different high-resolution investiga- tions in contrast to sodium. The reason for this is quite puzzling, since both alkalis have very similar physical and chemical properties (e.g. condensation and ionization proper- ties). Obtaining high-resolution transit observations of HD189733b and HD209458b, we were able to detect potassium on HD189733b (Manuscript 1), which was the first high-resolution detection of potassium on an exoplanet. The absence of potassium on HD209458b could be reasoned by depletion processes, such as condensation or photo-ionization or high-altitude clouds. In a further study (Manuscript II), we resolved the potassium line and compared this to a previously detected sodium absorption on this planet. The comparison showed, that the potassium lines are either tracing different altitudes and temperatures compared to the sodium lines, or are depleted so that the planetary Na/K- ratio is way larger than the stellar one. A comparison of the alkali lines with synthetic line profiles showed that the sodium lines were much broader than the potassium lines, probably being induced by winds. To investigate this, the effect of zonal streaming winds on the sodium lines on Jupiter-type planets is investigated in a further study (Manuscript III), showing that such winds can significantly broaden the Na- lines and that high-resolution observations can trace such winds with different properties. Furthermore, investigating the Na-line observations for different exoplanets, I showed that the Na-line broadening follows a trend with cooler planets showing stronger line broadening and so hinting on stronger winds, matching well into theoretical predictions. Each presented manuscript depends on the re- sults published within the previous manuscript, yielding a unitary study of the exoplanet HD189733b. The investigation of the potassium absorption required to account for different effects: The telluric lines removal and the effect of center-to-limb variation (see Manuscript I), the residual Rossiter-Mc-Laughlin effect (see Manuscript II) and the broadening of spectral lines on a translucent atmospheric ring by zonal jet streams (see Manuscript III). This thesis shows that high-resolution transmission spectroscopy is a powerful tool to probe sharp alkali line absorption on giant exoplanet atmospheres and to investigate on the properties and dynamics of hot Jupiter type atmospheres.}, language = {en} } @phdthesis{Thapa2020, author = {Thapa, Samudrajit}, title = {Deciphering anomalous diffusion in complex systems using Bayesian inference and large deviation theory}, pages = {xx, 186}, year = {2020}, abstract = {The development of methods such as super-resolution microscopy (Nobel prize in Chemistry, 2014) and multi-scale computer modelling (Nobel prize in Chemistry, 2013) have provided scientists with powerful tools to study microscopic systems. Sub-micron particles or even fluorescently labelled single molecules can now be tracked for long times in a variety of systems such as living cells, biological membranes, colloidal solutions etc. at spatial and temporal resolutions previously inaccessible. Parallel to such single-particle tracking experiments, super-computing techniques enable simulations of large atomistic or coarse-grained systems such as biologically relevant membranes or proteins from picoseconds to seconds, generating large volume of data. These have led to an unprecedented rise in the number of reported cases of anomalous diffusion wherein the characteristic features of Brownian motion—namely linear growth of the mean squared displacement with time and the Gaussian form of the probability density function (PDF) to find a particle at a given position at some fixed time—are routinely violated. This presents a big challenge in identifying the underlying stochastic process and also estimating the corresponding parameters of the process to completely describe the observed behaviour. Finding the correct physical mechanism which leads to the observed dynamics is of paramount importance, for example, to understand the first-arrival time of transcription factors which govern gene regulation, or the survival probability of a pathogen in a biological cell post drug administration. Statistical Physics provides useful methods that can be applied to extract such vital information. This cumulative dissertation, based on five publications, focuses on the development, implementation and application of such tools with special emphasis on Bayesian inference and large deviation theory. Together with the implementation of Bayesian model comparison and parameter estimation methods for models of diffusion, complementary tools are developed based on different observables and large deviation theory to classify stochastic processes and gather pivotal information. Bayesian analysis of the data of micron-sized particles traced in mucin hydrogels at different pH conditions unveiled several interesting features and we gained insights into, for example, how in going from basic to acidic pH, the hydrogel becomes more heterogeneous and phase separation can set in, leading to observed non-ergodicity (non-equivalence of time and ensemble averages) and non-Gaussian PDF. With large deviation theory based analysis we could detect, for instance, non-Gaussianity in seeming Brownian diffusion of beads in aqueous solution, anisotropic motion of the beads in mucin at neutral pH conditions, and short-time correlations in climate data. Thus through the application of the developed methods to biological and meteorological datasets crucial information is garnered about the underlying stochastic processes and significant insights are obtained in understanding the physical nature of these systems.}, language = {en} } @phdthesis{Graetz2020, author = {Gr{\"a}tz, Fabio M.}, title = {Nonlinear diffusion in granular gases and dense planetary rings}, school = {Universit{\"a}t Potsdam}, pages = {101}, year = {2020}, abstract = {Small moonlets or moons embedded in dense planetary rings create S-shaped density modulations called propellers if their masses are smaller than a certain threshold, alternatively they create a circumferential gap in the disk if the embedded body's mass exceeds this threshold (Spahn and Sremčević, 2000). The gravitational perturber scatters the ring particles, depletes the disk's density, and, thus, clears a gap, whereas counteracting viscous diffusion of the ring material has the tendency to close the created gap, thereby forming a propeller. Propeller objects were predicted by Spahn and Sremčević (2000) and Sremčević et al. (2002) and were later discovered by the Cassini space probe (Tiscareno et al., 2006, Sremčević et al., 2007, Tiscareno et al., 2008, and Tiscareno et al., 2010). The ring moons Pan and Daphnis are massive enough to maintain the circumferential Encke and Keeler gaps in Saturn's A ring and were detected by Showalter (1991) and Porco (2005) in Voyager and Cassini images, respectively. In this thesis, a nonlinear axisymmetric diffusion model is developed to describe radial density profiles of circumferential gaps in planetary rings created by embedded moons (Grätz et al., 2018). The model accounts for the gravitational scattering of the ring particles by the embedded moon and for the counteracting viscous diffusion of the ring matter back into the gap. With test particle simulations it is shown that the scattering of the ring particles passing the moon is larger for small impact parameters than estimated by Goldreich and Tremaine (1980). This is especially significant for the modeling of the Keeler gap. The model is applied to the Encke and Keeler gaps with the aim to estimate the shear viscosity of the ring in their vicinities. In addition, the model is used to analyze whether tiny icy moons whose dimensions lie below Cassini's resolution capabilities would be able to cause the poorly understood gap structure of the C ring and the Cassini Division. One of the most intriguing facets of Saturn's rings are the extremely sharp edges of the Encke and Keeler gaps: UVIS-scans of their gap edges show that the optical depth drops from order unity to zero over a range of far less than 100 m, a spatial scale comparable to the ring's vertical extent. This occurs despite the fact that the range over which a moon transfers angular momentum onto the ring material is much larger. Borderies et al. (1982, 1989) have shown that this striking feature is likely related to the local reversal of the usually outward-directed viscous transport of angular momentum in strongly perturbed regions. We have revised the Borderies et al. (1989) model using a granular flow model to define the shear and bulk viscosities, ν and ζ, in order to incorporate the angular momentum flux reversal effect into the axisymmetric diffusion model for circumferential gaps presented in this thesis (Grätz et al., 2019). The sharp Encke and Keeler gap edges are modeled and conclusions regarding the shear and bulk viscosities of the ring are discussed. Finally, we explore the question of whether the radial density profile of the central and outer A ring, recently measured by Tiscareno and Harris (2018) in the highest resolution to date, and in particular, the sharp outer A ring edge can be modeled consistently from the balance of gravitational scattering by several outer moons and the mass and momentum transport. To this aim, the developed model is extended to account for the inward drifts caused by multiple discrete and overlapping resonances with multiple outer satellites and is then used to hydrodynamically simulate the normalized surface mass density profile of the A ring. This section of the thesis is based on studies by Tajeddine et al. (2017a) who recently discussed the common misconception that the 7:6 resonance with Janus alone maintains the outer A ring edge, showing that the combined effort of several resonances with several outer moons is required to confine the A ring as observed by the Cassini spacecraft.}, language = {en} } @phdthesis{Seiler2020, author = {Seiler, Michael}, title = {The Non-Keplerian Motion of Propeller Moons in the Saturnian Ring System}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2020}, abstract = {One of the tremendous discoveries by the Cassini spacecraft has been the detection of propeller structures in Saturn's A ring. Although the generating moonlet is too small to be resolved by the cameras aboard Cassini, its produced density structure within the rings, caused by its gravity can be well observed. The largest observed propeller is called Bl{\´e}riot and has an azimuthal extent over several thousand kilometers. Thanks to its large size, Bl{\´e}riot could be identified in different images over a time span of over 10 years, allowing the reconstruction of its orbital evolution. It turns out that Bl{\´e}riot deviates considerably from its expected Keplerian orbit in azimuthal direction by several thousand kilometers. This excess motion can be well reconstructed by a superposition of three harmonics, and therefore resembles the typical fingerprint of a resonantly perturbed body. This PhD thesis is directed to the excess motion of Bl{\´e}riot. Resonant perturbations are a known for some of the outer satellites of Saturn. Thus, in the first part of this thesis, we seek for suiting resonance candidates nearby the propeller, which might explain the observed periods and amplitudes. In numeric simulations, we show that indeed resonances by Prometheus, Pandora and Mimas can explain the libration periods in good agreement, but not the amplitudes. The amplitude problem is solved by the introduction of a propeller-moonlet interaction model, where we assume a broken symmetry of the propeller by a small displacement of the moonlet. This results in a librating motion the moonlet around the propeller's symmetry center due to the non-vanishing accelerations. The retardation of the reaction of the propeller structure to the motion of the moonlet causes the propeller to become asymmetric. Hydrodynamic simulations to test our analytical model confirm our predictions. In the second part of this thesis, we consider a stochastic migration of the moonlet, which is an alternative hypothesis to explain the observed excess motion of Bl{\´e}riot. The mean-longitude is a time-integrated quantity and thus introduces a correlation between the independent kicks of a random walk, smoothing the noise and thus makes the residual look similar to the observed one for Bl{\´e}riot. We apply a diagonalization test to decorrelated the observed residuals for the propellers Bl{\´e}riot and Earhart and the ring-moon Daphnis. It turns out that the decorrelated distributions do not strictly follow the expected Gaussian distribution. The decorrelation method fails to distinguish a correlated random walk from a noisy libration and thus we provide an alternative study. Assuming the three-harmonic fit to be a valid representation of the excess motion for Bl{\´e}riot, independently from its origin, we test the likelihood that this excess motion can be created by a random walk. It turns out that a non-correlated and correlated random walk is unlikely to explain the observed excess motion.}, language = {en} } @phdthesis{Jay2020, author = {Jay, Raphael Martin}, title = {Principles of charge distribution and separation}, school = {Universit{\"a}t Potsdam}, pages = {xi, 162}, year = {2020}, abstract = {The electronic charge distributions of transition metal complexes fundamentally determine their chemical reactivity. Experimental access to the local valence electronic structure is therefore crucial in order to determine how frontier orbitals are delocalized between different atomic sites and electronic charge is spread throughout the transition metal complex. To that end, X-ray spectroscopies are employed in this thesis to study a series of solution-phase iron complexes with respect to the response of their local electronic charge distributions to different external influences. Using resonant inelastic X-ray scattering (RIXS) and X-ray absorption spectroscopy (XAS) at the iron L-edge, changes in local charge densities are investigated at the iron center depending on different ligand cages as well as solvent environments. A varying degree of charge delocalization from the metal center onto the ligands is observed, which is governed by the capabilities of the ligands to accept charge density into their unoccupied orbitals. Specific solvents are furthermore shown to amplify this process. Solvent molecules of strong Lewis-acids withdraw charge from the ligand allowing in turn for more metal charge to be delocalized onto the ligand. The resulting local charge deficiencies at the metal center are, however, counteracted by competing electron-donation channels from the ligand towards the iron, which are additionally revealed. This is interpreted as a compensating effect which strives to maintain local charge densities at the iron center. This mechanism of charge density preservation is found to be of general nature. Using time-resolved RIXS and XAS at the iron L-edge, an analogous interplay of electron donation and back-donation channels is also revealed for the case of charge-transfer excited states. In such transient configurations, the electronic occupation of iron-centered frontier orbitals has been altered by an optical excitation. Changes in local charge densities that are expected to follow an increased or decreased population of iron-centered orbitals are, however, again counteracted. By scaling the degree of electron donation from the ligand onto the metal, local charge densities at the iron center can be efficiently maintained. Since charge-transfer excitations, however, often constitute the initial step in many electron transfer processes, these findings challenge common notions of charge-separation in transition metal dyes.}, language = {en} } @phdthesis{Landau2020, author = {Landau, Livnat}, title = {Mechanical stimulation of in-vitro tissue growth using magnetic beads}, pages = {112}, year = {2020}, abstract = {Cells and tissues are sensitive to mechanical forces applied to them. In particular, bone forming cells and connective tissues, composed of cells embedded in fibrous extracellular matrix (ECM), are continuously remodeled in response to the loads they bear. The mechanoresponses of cells embedded in tissue include proliferation, differentiation, apoptosis, internal signaling between cells, and formation and resorption of tissue. Experimental in-vitro systems of various designs have demonstrated that forces affect tissue growth, maturation and mineralization. However, the results depended on different parameters such as the type and magnitude of the force applied in each study. Some experiments demonstrated that applied forces increase cell proliferation and inhibit cell maturation rate, while other studies found the opposite effect. When the effect of different magnitudes of forces was compared, some studies showed that higher forces resulted in a cell proliferation increase or differentiation decrease, while other studies observed the opposite trend or no trend at all. In this study, MC3T3-E1 cells, a cell line of pre-osteoblasts (bone forming cells), was used. In this cell line, cell differentiation is known to accelerate after cells stop proliferating, typically at confluency. This makes this cell line an interesting subject for studying the influence of forces on the switch between the proliferation stage of the precursor cell and the differentiation to the mature osteoblasts. A new experimental system was designed to perform systematic investigations of the influence of the type and magnitude of forces on tissue growth. A single well plate contained an array of 80 rectangular pores. Each pore was seeded with MC3T3-E1 cells. The culture medium contained magnetic beads (MBs) of 4.5 μm in diameter that were incorporated into the pre-osteoblast cells. Using an N52 neodymium magnet, forces ranging over three orders of magnitude were applied to MBs incorporated in cells at 10 different distances from the magnet. The amount of formed tissue was assessed after 24 days of culture. The experimental design allowed to obtain data concerning (i) the influence of the type of the force (static, oscillating, no force) on tissue growth; (ii) the influence of the magnitude of force (pN-nN range); (iii) the effect of functionalizing the magnetic beads with the tripeptide Arg-Gly-Asp (RGD). To learn about cell differentiation state, in the final state of the tissue growth experiments, an analysis for the expression of alkaline phosphatase (ALP), a well - known marker of osteoblast differentiation, was performed. The experiments showed that the application of static magnetic forces increased tissue growth compared to control, while oscillating forces resulted in tissue growth reduction. A statistically significant positive correlation was found between the amount of tissue grown and the magnitude of the oscillating magnetic force. A positive but non-significant correlation of the amount of tissue with the magnitude of forces was obtained when static forces were applied. Functionalizing the MBs with RGD peptides and applying oscillating forces resulted in an increase of tissue growth relative to tissues incubated with "plain" epoxy MBs. ALP expression decreased as a function of the magnitude of force both when static and oscillating forces were applied. ALP stain intensity was reduced relative to control when oscillating forces were applied and was not significantly different than control for static forces. The suggested interpretation of the experimental findings is that larger mechanical forces delay cell maturation and keep the pre-osteoblasts in a more proliferative stage characterized by more tissue formed and lower expression of ALP. While the influence of the force magnitude can be well explained by an effect of the force on the switch between proliferation and differentiation, the influence of force type (static or oscillating) is less clear. In particular, it is challenging to reconcile the reduction of tissue formed under oscillating forces as compared to controls with the simultaneous reduction of ALP expression. To better understand this, it may be necessary to refine the staining protocol of the scaffolds and to include the amount and structure of ECM as well as other factors that were not monitored in the experiment and which may influence tissue growth and maturation. The developed experimental system proved well suited for a systematic and efficient study of the mechanoresponsiveness of tissue growth, it allowed a study of the dependence of tissue growth on force magnitude ranging over three orders of magnitude, and a comparison between the effect of static and oscillating forces. Future experiments can explore the multiple parameters that affect tissue growth as a function of the magnitude of the force: by applying different time-dependent forces; by extending the force range studied; or by using different cell lines and manipulating the mechanotransduction in the cells biochemically.}, language = {en} } @phdthesis{Wagle2019, author = {Wagle, Swapnil}, title = {Multi scale modeling of SNARE-mimetic peptides for their applications in membrane fusion}, pages = {105}, year = {2019}, language = {en} } @phdthesis{Bachmann2019, author = {Bachmann, Felix}, title = {Non-linearity of magnetic micropropellers}, school = {Universit{\"a}t Potsdam}, pages = {120}, year = {2019}, language = {en} } @phdthesis{Haase2019, author = {Haase, Nadin}, title = {The nascent peptide chain in the ribosomal exit tunnel}, school = {Universit{\"a}t Potsdam}, pages = {105}, year = {2019}, language = {en} } @phdthesis{Karimi, author = {Karimi, Marzieh}, title = {Mechanical properties of vesicle membranes in asymmetric buffer conditions}, school = {Universit{\"a}t Potsdam}, pages = {96}, language = {en} } @phdthesis{Pohl2018, author = {Pohl, Anna}, title = {Shaping via binding}, school = {Universit{\"a}t Potsdam}, pages = {119,XVIII}, year = {2018}, language = {de} } @phdthesis{Eckert2019, author = {Eckert, Sebastian Oliver}, title = {Accessing active sites of molecular proton dynamics}, doi = {10.25932/publishup-42587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425870}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 193}, year = {2019}, abstract = {The unceasing impact of intense sunlight on earth constitutes a continuous source of energy fueling countless natural processes. On a molecular level, the energy contained in the electromagnetic radiation is transferred through photochemical processes into chemical or thermal energy. In the course of such processes, photo-excitations promote molecules into thermally inaccessible excited states. This induces adaptations of their molecular geometry according to the properties of the excited state. Decay processes towards energetically lower lying states in transient molecular geometries result in the formation of excited state relaxation pathways. The photo-chemical relaxation mechanisms depend on the studied system itself, the interactions with its chemical environment and the character of the involved states. This thesis focuses on systems in which photo-induced deprotonation processes occur at specific atomic sites. To detect these excited-state proton dynamics at the affected atoms, a local probe of molecular electronic structure is required. Therefore, site-selective and orbital-specific K-edge soft X-ray spectroscopy techniques are used here to detect photo-induced proton dynamics in gaseous and liquid sample environments. The protonation of nitrogen (N) sites in organic molecules and the oxygen (O) atom in the water molecule are probed locally through transitions between 1s orbitals and the p-derived molecular valence electronic structure. The used techniques are X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). Both yield access to the unoccupied local valence electronic structure, whereas the latter additionally probes occupied states. We apply these probes in optical pump X-ray probe experiments to investigate valence excited-state proton transfer capabilities of aqueous 2-thiopyridone. A characteristic shift of N K-edge X-ray absorption resonances as well as a distinct X-ray emission line are established by us as spectral fingerprints of N deprotonation in the system. We utilize them to identify photo-induced N deprotonation of 2-thiopyridone on femtosecond timescales, in optical pump N K-edge RIXS probe measurements. We further establish excited state proton transfer mechanisms on picosecond and nanosecond timescales along the dominant relaxation pathways of 2-thiopyridone using transient N K-edge XAS. Despite being an excellent probe mechanism for valence excited-state proton dynamics, the K-edge core-excitation itself also disturbs the electronic structure at specific sites of a molecule. The rapid reaction of protons to 1s photo-excitations can yield directional structural distortions within the femtosecond core-excited state lifetime. These directional proton dynamics can change the energetic separation of eigenstates of the system and alter probabilities for radiative decay between them. Both effects yield spectral signatures of the dynamics in RIXS spectra. Using these signatures of RIXS transitions into electronically excited states, we investigate proton dynamics induced by N K-edge excitation in the amino-acid histidine. The minor core-excited state dynamics of histidine in basic and neutral chemical environments allow us to establish XAS and RIXS spectral signatures of different N protonation states at its imidazole N sites. Based on these signatures, we identify an excitation-site-independent N-H dissociation for N K-edge excitation under acidic conditions. Such directional structural deformations, induced by core-excitations, also make proton dynamics in electronic ground states accessible through RIXS transitions into vibrationally excited states. In that context, we interpret high resolution RIXS spectra of the water molecule for three O K-edge resonances based on quantum-chemical wave packet propagation simulations. We show that highly oriented ground state vibrational modes of coupled nuclear motion can be populated through RIXS processes by preparation of core-excited state nuclear wave packets with the same directionality. Based on that, we analytically derive the possibility to extract one-dimensional directional cuts through potential energy surfaces of molecular systems from the corresponding RIXS spectra. We further verify this concept through the extraction of the gas-phase water ground state potential along three coordinates from experimental data in comparison to quantum-chemical simulations of the potential energy surface. This thesis also contains contributions to instrumentation development for investigations of photo-induced molecular dynamics at high brilliance X-ray light sources. We characterize the setup used for the transient valence-excited state XAS measurements of 2-thiopyridone. Therein, a sub-micrometer thin liquid sample environment is established employing in-vacuum flat-jet technology, which enables a transmission experimental geometry. In combination with a MHz-laser system, we achieve a high detection sensitivity for photo-induced X-ray absorption changes. Additionally, we present conceptual improvements for temporal X-ray optical cross-correlation techniques based on transient changes of multilayer optical properties, which are crucial for the realization of femtosecond time-resolved studies at synchrotrons and free-electron lasers.}, language = {en} } @phdthesis{Hlawenka2018, author = {Hlawenka, Peter}, title = {Samarium hexaboride}, school = {Universit{\"a}t Potsdam}, pages = {116, XXI}, year = {2018}, language = {en} } @phdthesis{Beckmann2018, author = {Beckmann, Johanna}, title = {Impacts of arctic climate change on sea level and and atmospheric circulation in the Northern mid-laltitudes}, school = {Universit{\"a}t Potsdam}, year = {2018}, language = {de} } @phdthesis{Willner2018, author = {Willner, Sven N.}, title = {Global economic response to flood damages under climate change}, school = {Universit{\"a}t Potsdam}, pages = {v, 247}, year = {2018}, abstract = {Climate change affects societies across the globe in various ways. In addition to gradual changes in temperature and other climatic variables, global warming is likely to increase intensity and frequency of extreme weather events. Beyond biophysical impacts, these also directly affect societal and economic activity. Additionally, indirect effects can occur; spatially, economic losses can spread along global supply-chains; temporally, climate impacts can change the economic development trajectory of countries. This thesis first examines how climate change alters river flood risk and its local socio-economic implications. Then, it studies the global economic response to river floods in particular, and to climate change in general. Changes in high-end river flood risk are calculated for the next three decades on a global scale with high spatial resolution. In order to account for uncertainties, this assessment makes use of an ensemble of climate and hydrological models as well as a river routing model, that is found to perform well regarding peak river discharge. The results show an increase in high-end flood risk in many parts of the world, which require profound adaptation efforts. This pressure to adapt is measured as the enhancement in protection level necessary to stay at historical high-end risk. In developing countries as well as in industrialized regions, a high pressure to adapt is observed - the former to increase low protection levels, the latter to maintain the low risk levels perceived in the past. Further in this thesis, the global agent-based dynamic supply-chain model acclimate is developed. It models the cascading of indirect losses in the global supply network. As an anomaly model its agents - firms and consumers - maximize their profit locally to respond optimally to local perturbations. Incorporating quantities as well as prices on a daily basis, it is suitable to dynamically resolve the impacts of unanticipated climate extremes. The model is further complemented by a static measure, which captures the inter-dependencies between sectors across regions that are only connected indirectly. These higher-order dependencies are shown to be important for a comprehensive assessment of loss-propagation and overall costs of local disasters. In order to study the economic response to river floods, the acclimate model is driven by flood simulations. Within the next two decades, the increase in direct losses can only partially be compensated by market adjustments, and total losses are projected to increase by 17\% without further adaptation efforts. The US and the EU are both shown to receive indirect losses from China, which is strongly affected directly. However, recent trends in the trade relations leave the EU in a better position to compensate for these losses. Finally, this thesis takes a broader perspective when determining the investment response to the climate change damages employing the integrated assessment model DICE. On an optimal economic development path, the increase in damages is anticipated as emissions and consequently temperatures increase. This leads to a significant devaluation of investment returns and the income losses from climate damages almost double. Overall, the results highlight the need to adapt to extreme weather events - local physical adaptation measures have to be combined with regional and global policy measures to prepare the global supply-chain network to climate change.}, language = {en} } @phdthesis{Fox2018, author = {Fox, Anne}, title = {Metal-line absorbers in the high-redshift intergalactic medium}, school = {Universit{\"a}t Potsdam}, pages = {261}, year = {2018}, language = {de} } @phdthesis{Kuehn2018, author = {K{\"u}hn, Danilo}, title = {Synchrotron-based angle-resolved time-of-flight electron spectroscopy for dynamics in dichalogenides}, school = {Universit{\"a}t Potsdam}, pages = {147}, year = {2018}, language = {en} } @phdthesis{Harutyunyan2018, author = {Harutyunyan, Gohar}, title = {Spectroscopy at the limit}, pages = {X, 112}, year = {2018}, language = {en} } @phdthesis{Mott2018, author = {Mott, Alessandro}, title = {Analysis of the lithium resonance doublet in cool stars with 3D model atmospheres and NLTE line formation}, pages = {X, 148}, year = {2018}, language = {en} } @phdthesis{Eickelmann2018, author = {Eickelmann, Stephan Felix}, title = {Experimental Study of Liquid Interfaces with Compositional Gradients}, doi = {10.17617/2.3010222}, school = {Universit{\"a}t Potsdam}, pages = {153}, year = {2018}, abstract = {Der Inhalt dieser Arbeit ist die experimentelle Untersuchung von verdunstenen d{\"u}nnen Filmen auf glatten Oberfl{\"a}chen, und die Anreicherung, das Kristallwachstum so wie Marangoni-Fluss in der N{\"a}he der Dreiphasenlinie bei partiell benetzenden Mischungen aus fl{\"u}chtigen und nichtfl{\"u}chtigen Fl{\"u}ssigkeiten. Im Detail werden die Eigenschaften von planaren Fl{\"u}ssigkeitsfilmen und d{\"u}nnen Fl{\"u}ssigkeitsabschnitten in der N{\"a}he der dreiphasigen Kontaktlinie behandelt. In beiden F{\"a}llen verliert die Fl{\"u}ssigkeit kontinuierlich eine Komponente durch Verdampfung. Ein Thema ist das ntnetzungsveralten ultrad{\"u}nner Filme aus bin{\"a}ren Mischungen eines fl{\"u}chtigen L{\"o}sungsmittels und eines nichtfl{\"u}chtigen Stoffes. Dabei wird analysiert wie die Dicke, bei der der Film reißt, mit der Kristallisation des gel{\"o}sten Stoffes an der Grenzfl{\"a}che zwischen Fl{\"u}ssigkeit und Substrat in Verbindung steht, sobald der gel{\"o}ste Stoff seine {\"U}bers{\"a}ttigung erreicht. Die Resultate dieses Projektes zeigen eine universelle Beziehung zwischen der Entnetzungdicke und dem S{\"a}ttigungsverhalten. Das zweite Forschungsgebiet sind einzelne Nanopartikel, die in molekular d{\"u}nne Filme auf planaren Substraten eingebettet sind. Es zeigt sich, dass die Nanopartikel eine unerwartet große Filmoberfl{\"a}chenverzerrung (Meniskus) verursachen. Diese Verzerrung kann durch herk{\"o}mmliche Reflexionsmikroskopie quantitativ gemessen werden, obwohl die Nanopartikel viel kleiner als die Rayleigh-Beugungsgrenze sind. Untersuchungen mit bin{\"a}ren Mischungen fl{\"u}chtiger L{\"o}sungsmittel und nichtfl{\"u}chtiger Stoffe (Polymere) zielen auf ein besseres Verst{\"a}ndnis/Vorhersage der finalen Schichtdicke, zeitaufgel{\"o}sten Verd{\"u}nnung, zeitaufgel{\"o}sten Verdunstung und der Entwicklung der Konzentration des gel{\"o}sten Stoffes innerhalb des verd{\"u}nnenden Filmes. Eine quantitative theoretische Beschreibung der experimentellen Ergebnisse wird hergeleitet. Unerwarteterweise zeigen die Experimente, mit vollst{\"a}ndig mischbarer bin{\"a}rer Mischungen fl{\"u}chtiger Fl{\"u}ssigkeiten, die einzeln glatte Filme bilden, dass Filme dieser Mischungen nicht notwendigerweise kontinuierlich und glatt sind. Vielmehr k{\"o}nnen sie Oberfl{\"a}chenwellen bilden oder sogar aufreißen. Dies wird mit Oberfl{\"a}chen-Marangoni-Str{\"o}mungen erkl{\"a}rt. Es wird eine neue Methode f{\"u}r die schnelle Herstellung von ultralang gerichtetn Diphenylalanin-Einkristallen (Dip- Casting) (mm/min) vorgestellt. Dabei viii wird gezeigt, wie die spezifischen Verdunstungsbedingen an der Dreiphasenlinie f{\"u}r einen kontrollierten Peptidkristallwachstumsprozess verwendet werden k{\"o}nnen. Abschließend wird gezeigt, wie die Beschr{\"a}nkung innerhalb einer kleinen Kapillare die Peptidkristallisation beeinflusst, diese verstanden und verwendet werden kann.}, language = {en} } @phdthesis{Totz2018, author = {Totz, Sonja Juliana}, title = {Modeling and data analysis of large-scale atmosphere dynamics associated with extreme weather}, school = {Universit{\"a}t Potsdam}, pages = {xii, 166}, year = {2018}, abstract = {In the last decades the frequency and intensity of extreme weather events like heat waves and heavy rainfall have increased and are at least partly linked to global warming. These events can have a strong impact on agricultural and economic production and, thereby, on society. Thus, it is important to improve our understanding of the physical processes leading to those extreme events in order to provide accurate near-term and long-term forecasts. Thermodynamic drivers associated with global warming are well understood, but dynamical aspects of the atmosphere much less so. The dynamical aspects, while less important than the thermodynamic drivers in regards to large-scale and long-time averaged effects, play a critical role in the formation of extremes. The overall aim of this thesis is to improve our understanding of patterns, variability and trends in the global atmospheric circulation under a changing climate. In particular, in this dissertation I developed two new data-driven methods to quantitatively describe the dynamics of jet streams, Hadley cells and storm tracks. In addition, I introduce and validate a new statistical-dynamical atmosphere model that can be used to efficiently model the large-scale circulation. First, I developed a scheme based on the Dijkstra 'shortest-path' algorithm to identify jet stream cores. Using reanalysis data, I found a significant change in jet stream strength and position over the last decades: Specifically, a decrease in wind speeds and a spatial shift toward the poles. This work also shows that the splitting or merging of the polar front jet stream and the subtropical jet stream depends on the season and longitudinal position. In a follow-up study, I analyzed trends in the latitudinal position of the poleward edge of the Hadley cell and subtropical jet stream core for all longitudes. These trends depend strongly on longitude and thus the impacts of tropical expansion might be pronounced in some regions and absent in others. The second approach was to develop an empirical forecast method for European and Mediterranean winter precipitation. This prediction algorithm innovatively incorporates the spatial patterns of predictors in autumn using clustering analyses. I identified the most important precursors (snow cover in Eurasia, Barents and Kara sea ice concentrations as well as sea surface temperature in the Atlantic and Mediterranean region) for the precipitation prediction. This forecast algorithm had higher forecast skills than conventionally employed methods such as Canonical Correlation Analysis or operational systems using climate models. The last approach was to examine the atmospheric circulation using the novel statisticaldynamical atmosphere model Aeolus. First, I validated the model's depiction of the largescale circulation in terms of Hadley circulation, jet streams, storm tracks and planetary waves. To do so, I performed a parameter optimization using simulated annealing. Next, I investigated the sensitivity of the large-scale circulation to three different temperature components: global mean temperature, meridional temperature gradient and zonal temperature gradient. The model experiment showed that the strength of the Hadley cell, storm tracks and jet streams depend almost linearly on both the global mean temperature and the meridional temperature gradient, whereas the zonal temperature gradient is shown to have little or no influence. The magnitude of planetary waves is clearly affected by all three temperature components. Finally, the width of the Hadley cell behaves nonlinearly with respect to all three temperature components. These findings might have profound consequences for climate modeling of the Mediterranean region. The latitudinal poleward trend of the Hadley cell edge position might become stronger under climate change according to the results with Aeolus. These changes would lead to a substantial reduction of the winter precipitation in the Mediterranean region. In this case seasonal empirical forecast methods, like the clustering-based prediction scheme, will play an important role for forecasting seasonal droughts in advance such that water managers and politicians can mitigate impacts.}, language = {en} } @phdthesis{Reese2018, author = {Reese, Ronja}, title = {The far reach of ice-shelf thinning in Antarctica}, school = {Universit{\"a}t Potsdam}, pages = {227}, year = {2018}, language = {en} } @phdthesis{Kornhuber2017, author = {Kornhuber, Kai}, title = {Rossby wave dynamics and changes in summertime weather extremes}, school = {Universit{\"a}t Potsdam}, pages = {xii, 222}, year = {2017}, abstract = {Extreme weather events like heatwaves and floods severely affect societies with impacts ranging from economic damages to losses in human lifes. Global warming caused by anthropogenic greenhouse gas emissions is expected to increase their frequency and intensity, particularly in the warm season. Next to these thermodynamic changes, climate change might also impact the large scale atmospheric circulation.Such dynamic changes might additionally act on the occurence of extreme weather events, but involved mechanisms are often highly non-linear. Therefore, large uncertainty exists on the exact nature of these changes and the related risks to society. Particularly in the densely populated mid-latitudes weather patterns are governed by the large scale circulation like the jet-streams and storm tracks. Extreme weather in this region is often related to persistent weather systems associated with a strongly meandering jet-stream. Such meanders are called Rossby waves. Under specific conditions they can become slow moving, stretched around the entire hemisphere and generate simultaneaous heat- and rainfall extremes in far-away regions. This thesis aims at enhancing the understanding of synoptic-scale, circumglobal Rossby waves and the associated risks of dynamical changes to society. More specific, the analyses investigate their relation to extreme weather, regions at risk, under which conditions they are generated, and the influence of anthropogenic climate change on those conditions now, in the past and in the future. I find that circumglobal Rossby waves promoted simultaneous occuring weather extremes across the northern hemisphere in several recent summers. Further, I present evidence that they are often linked to quasiresonant-amplification of planetary waves. These events include the 2003 European heatwave and the Moscow heatwave of 2010. This non-linear mechanism acts on the upper level flow through trapping and amplification of stationary synoptic scale waves. I show that this resonance mechanism acts in both hemispheres and is related to extreme weather. A main finding is that circumglobal Rossby waves primarily occur as two specific teleconnection patterns associated with a wave 5 and wave 7 pattern in the northern hemisphere, likely due to the favourable longitudinal distance of prominent mountain ridges here. Furthermore, I identify those regions which are particularly at risk: The central United States, western Europe and the Ukraine/Russian region. Moreover, I present evidence that the wave 7 pattern has and extreme weather in these regions. My results suggest that the increase in frequency can be linked to favourable changes in large scale temperature gradients, which I show to be largely underestimated by model simulations. Using surface temperature fingerprint as proxy for investigating historic and future model ensembles, evidence is presented that anthropogenic warming has likely increased the probability for the occurence of circumglobal Rossby waves. Further it is shown that this might lead to a doubling of such events until the end of the century under a high-emission scenario. Overall, this thesis establishes several atmosphere-dynamical pathways by which changes in large scale temperature gradients might link to persistent boreal summer weather. It highlights the societal risks associated with the increasing occurence of a newly discovered Rossby wave teleconnection pattern, which has the potential to cause simultaneaous heat-extremes in the mid-latitudinal bread-basket regions. In addition, it provides further evidence that the traditional picture by which quasi-stationary Rossby waves occur only in the low wavenumber regime, should be reconsidered.}, language = {en} } @phdthesis{Kretschmer2017, author = {Kretschmer, Marlene}, title = {Disentangling causal pathways of the stratospheric polar vortex}, school = {Universit{\"a}t Potsdam}, pages = {171}, year = {2017}, language = {en} } @phdthesis{Stomps2017, author = {Stomps, Benjamin Ren{\´e} Harald}, title = {Entwicklung von Protein-basierten Bausteinen zur Funktionalisierung von Polymeroberfl{\"a}chen}, school = {Universit{\"a}t Potsdam}, pages = {88}, year = {2017}, language = {de} } @phdthesis{Ghaisari2017, author = {Ghaisari, Sara}, title = {Magnetic anisotropy analysis of magnetic nanoparticles in magnetotactic bacteria}, school = {Universit{\"a}t Potsdam}, pages = {115}, year = {2017}, language = {en} } @phdthesis{LeighWojno2017, author = {Leigh Wojno, Jennifer}, title = {Correlations between kinematics, chemistry, and ages of stars in the solar neighbourhood as seen by the RAVE survey}, school = {Universit{\"a}t Potsdam}, pages = {114}, year = {2017}, language = {en} } @phdthesis{Sachse2017, author = {Sachse, Manuel}, title = {Dynamics and distribution of dust ejected from the Galilean moons of Jupiter}, school = {Universit{\"a}t Potsdam}, pages = {105}, year = {2017}, language = {en} } @phdthesis{Buschhueter2017, author = {Buschh{\"u}ter, David}, title = {Anforderungsrelevante mathematik- und physikbezogene Leistungsdispositionen von Physikanf{\"a}ngerinnen und - anf{\"a}ngern}, school = {Universit{\"a}t Potsdam}, year = {2017}, language = {de} } @phdthesis{CanUcar2017, author = {Can Ucar, Mehmet}, title = {Elastic interactions between antagonistic molecular motors}, school = {Universit{\"a}t Potsdam}, pages = {106}, year = {2017}, language = {en} } @phdthesis{Ehrig2017, author = {Ehrig, Sebastian}, title = {3D curvature and its role on tissue organization}, school = {Universit{\"a}t Potsdam}, pages = {132}, year = {2017}, abstract = {Shape change is a fundamental process occurring in biological tissues during embryonic development and regeneration of tissues and organs. This process is regulated by cells that are constrained within a complex environment of biochemical and physical cues. The spatial constraint due to geometry has a determining role on tissue mechanics and the spatial distribution of force patterns that, in turn, influences the organization of the tissue structure. An understanding of the underlying principles of tissue organization may have wide consequences for the understanding of healing processes and the development of organs and, as such, is of fundamental interest for the tissue engineering community. This thesis aims to further our understanding of how the collective behaviour of cells is influenced by the 3D geometry of the environment. Previous research studying the role of geometry on tissue growth has mainly focused either on flat surfaces or on substrates where at least one of the principal curvatures is zero. In the present work, tissue growth from MC3T3-E1 pre-osteoblasts was investigated on surfaces of controlled mean curvature. One key aspect of this thesis was the development of substrates of controlled mean curvature and their visualization in 3D. It was demonstrated that substrates of controlled mean curvature suitable for cell culture can be fabricated using liquid polymers and surface tension effects. Using these substrates, it was shown that the mean surface curvature has a strong impact on the rate of tissue growth and on the organization of the tissue structure. It was thereby not only demonstrated that the amount of tissue produced (i.e. growth rates) by the cells depends on the mean curvature of the substrate but also that the tissue surface behaves like a viscous fluid with an equilibrium shape governed by the Laplace-Young-law. It was observed that more tissue was formed on highly concave surfaces compared to flat or convex surfaces. Motivated by these observations, an analytical model was developed, where the rate of tissue growth is a function of the mean curvature, which could successfully describe the growth kinetics. This model was also able to reproduce the growth kinetics of previous experiments where tissues have been cultured in straight-sided prismatic pores. A second part of this thesis focuses on the tissue structure, which influences the mechanical properties of the mature bone tissue. Since the extracellular matrix is produced by the cells, the cell orientation has a strong impact on the direction of the tissue fibres. In addition, it was recently shown that some cell types exhibit collective alignment similar to liquid crystals. Based on this observation, a computational model of self-propelled active particles was developed to explore in an abstract manner how the collective behaviour of cells is influenced by 3D curvature. It was demonstrated that the 3D curvature has a strong impact on the self-organization of active particles and gives, therefore, first insights into the principles of self-organization of cells on curved surfaces.}, language = {en} } @phdthesis{Guber2017, author = {Guber, Christoph Rudolf}, title = {Dust depletion of Ca and Ti in quasar absorption-line systems}, school = {Universit{\"a}t Potsdam}, pages = {178}, year = {2017}, language = {en} } @phdthesis{Marx2016, author = {Marx, Robert}, title = {A quantitative model of spatial correlations in parametric down conversion for investigating complementarity at a double slit}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2016}, language = {en} }