@phdthesis{Ziese2014, author = {Ziese, Ramona}, title = {Geometric electroelasticity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72504}, school = {Universit{\"a}t Potsdam}, pages = {vi, 113}, year = {2014}, abstract = {In this work a diffential geometric formulation of the theory of electroelasticity is developed which also includes thermal and magnetic influences. We study the motion of bodies consisting of an elastic material that are deformed by the influence of mechanical forces, heat and an external electromagnetic field. To this end physical balance laws (conservation of mass, balance of momentum, angular momentum and energy) are established. These provide an equation that describes the motion of the body during the deformation. Here the body and the surrounding space are modeled as Riemannian manifolds, and we allow that the body has a lower dimension than the surrounding space. In this way one is not (as usual) restricted to the description of the deformation of three-dimensional bodies in a three-dimensional space, but one can also describe the deformation of membranes and the deformation in a curved space. Moreover, we formulate so-called constitutive relations that encode the properties of the used material. Balance of energy as a scalar law can easily be formulated on a Riemannian manifold. The remaining balance laws are then obtained by demanding that balance of energy is invariant under the action of arbitrary diffeomorphisms on the surrounding space. This generalizes a result by Marsden and Hughes that pertains to bodies that have the same dimension as the surrounding space and does not allow the presence of electromagnetic fields. Usually, in works on electroelasticity the entropy inequality is used to decide which otherwise allowed deformations are physically admissible and which are not. It is alsoemployed to derive restrictions to the possible forms of constitutive relations describing the material. Unfortunately, the opinions on the physically correct statement of the entropy inequality diverge when electromagnetic fields are present. Moreover, it is unclear how to formulate the entropy inequality in the case of a membrane that is subjected to an electromagnetic field. Thus, we show that one can replace the use of the entropy inequality by the demand that for a given process balance of energy is invariant under the action of arbitrary diffeomorphisms on the surrounding space and under linear rescalings of the temperature. On the one hand, this demand also yields the desired restrictions to the form of the constitutive relations. On the other hand, it needs much weaker assumptions than the arguments in physics literature that are employing the entropy inequality. Again, our result generalizes a theorem of Marsden and Hughes. This time, our result is, like theirs, only valid for bodies that have the same dimension as the surrounding space.}, language = {en} } @phdthesis{Zass2021, author = {Zass, Alexander}, title = {A multifaceted study of marked Gibbs point processes}, doi = {10.25932/publishup-51277}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512775}, school = {Universit{\"a}t Potsdam}, pages = {vii, 104}, year = {2021}, abstract = {This thesis focuses on the study of marked Gibbs point processes, in particular presenting some results on their existence and uniqueness, with ideas and techniques drawn from different areas of statistical mechanics: the entropy method from large deviations theory, cluster expansion and the Kirkwood--Salsburg equations, the Dobrushin contraction principle and disagreement percolation. We first present an existence result for infinite-volume marked Gibbs point processes. More precisely, we use the so-called entropy method (and large-deviation tools) to construct marked Gibbs point processes in R^d under quite general assumptions. In particular, the random marks belong to a general normed space S and are not bounded. Moreover, we allow for interaction functionals that may be unbounded and whose range is finite but random. The entropy method relies on showing that a family of finite-volume Gibbs point processes belongs to sequentially compact entropy level sets, and is therefore tight. We then present infinite-dimensional Langevin diffusions, that we put in interaction via a Gibbsian description. In this setting, we are able to adapt the general result above to show the existence of the associated infinite-volume measure. We also study its correlation functions via cluster expansion techniques, and obtain the uniqueness of the Gibbs process for all inverse temperatures β and activities z below a certain threshold. This method relies in first showing that the correlation functions of the process satisfy a so-called Ruelle bound, and then using it to solve a fixed point problem in an appropriate Banach space. The uniqueness domain we obtain consists then of the model parameters z and β for which such a problem has exactly one solution. Finally, we explore further the question of uniqueness of infinite-volume Gibbs point processes on R^d, in the unmarked setting. We present, in the context of repulsive interactions with a hard-core component, a novel approach to uniqueness by applying the discrete Dobrushin criterion to the continuum framework. We first fix a discretisation parameter a>0 and then study the behaviour of the uniqueness domain as a goes to 0. With this technique we are able to obtain explicit thresholds for the parameters z and β, which we then compare to existing results coming from the different methods of cluster expansion and disagreement percolation. Throughout this thesis, we illustrate our theoretical results with various examples both from classical statistical mechanics and stochastic geometry.}, language = {en} } @phdthesis{Zadorozhnyi2021, author = {Zadorozhnyi, Oleksandr}, title = {Contributions to the theoretical analysis of the algorithms with adversarial and dependent data}, school = {Universit{\"a}t Potsdam}, pages = {144}, year = {2021}, abstract = {In this work I present the concentration inequalities of Bernstein's type for the norms of Banach-valued random sums under a general functional weak-dependency assumption (the so-called \$\cC-\$mixing). The latter is then used to prove, in the asymptotic framework, excess risk upper bounds of the regularised Hilbert valued statistical learning rules under the τ-mixing assumption on the underlying training sample. These results (of the batch statistical setting) are then supplemented with the regret analysis over the classes of Sobolev balls of the type of kernel ridge regression algorithm in the setting of online nonparametric regression with arbitrary data sequences. Here, in particular, a question of robustness of the kernel-based forecaster is investigated. Afterwards, in the framework of sequential learning, the multi-armed bandit problem under \$\cC-\$mixing assumption on the arm's outputs is considered and the complete regret analysis of a version of Improved UCB algorithm is given. Lastly, probabilistic inequalities of the first part are extended to the case of deviations (both of Azuma-Hoeffding's and of Burkholder's type) to the partial sums of real-valued weakly dependent random fields (under the type of projective dependence condition).}, language = {en} } @phdthesis{Witt2003, author = {Witt, Ingo}, title = {Beitr{\"a}ge zur Theorie singul{\"a}rer hyperbolischer Differentialoperatoren}, address = {Potsdam}, pages = {121 S.}, year = {2003}, language = {de} } @phdthesis{Wichitsanguan2016, author = {Wichitsa-nguan, Korakot}, title = {Modifications and extensions of the logistic regression and Cox model}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90033}, school = {Universit{\"a}t Potsdam}, pages = {x, 131}, year = {2016}, abstract = {In many statistical applications, the aim is to model the relationship between covariates and some outcomes. A choice of the appropriate model depends on the outcome and the research objectives, such as linear models for continuous outcomes, logistic models for binary outcomes and the Cox model for time-to-event data. In epidemiological, medical, biological, societal and economic studies, the logistic regression is widely used to describe the relationship between a response variable as binary outcome and explanatory variables as a set of covariates. However, epidemiologic cohort studies are quite expensive regarding data management since following up a large number of individuals takes long time. Therefore, the case-cohort design is applied to reduce cost and time for data collection. The case-cohort sampling collects a small random sample from the entire cohort, which is called subcohort. The advantage of this design is that the covariate and follow-up data are recorded only on the subcohort and all cases (all members of the cohort who develop the event of interest during the follow-up process). In this thesis, we investigate the estimation in the logistic model for case-cohort design. First, a model with a binary response and a binary covariate is considered. The maximum likelihood estimator (MLE) is described and its asymptotic properties are established. An estimator for the asymptotic variance of the estimator based on the maximum likelihood approach is proposed; this estimator differs slightly from the estimator introduced by Prentice (1986). Simulation results for several proportions of the subcohort show that the proposed estimator gives lower empirical bias and empirical variance than Prentice's estimator. Then the MLE in the logistic regression with discrete covariate under case-cohort design is studied. Here the approach of the binary covariate model is extended. Proving asymptotic normality of estimators, standard errors for the estimators can be derived. The simulation study demonstrates the estimation procedure of the logistic regression model with a one-dimensional discrete covariate. Simulation results for several proportions of the subcohort and different choices of the underlying parameters indicate that the estimator developed here performs reasonably well. Moreover, the comparison between theoretical values and simulation results of the asymptotic variance of estimator is presented. Clearly, the logistic regression is sufficient for the binary outcome refers to be available for all subjects and for a fixed time interval. Nevertheless, in practice, the observations in clinical trials are frequently collected for different time periods and subjects may drop out or relapse from other causes during follow-up. Hence, the logistic regression is not appropriate for incomplete follow-up data; for example, an individual drops out of the study before the end of data collection or an individual has not occurred the event of interest for the duration of the study. These observations are called censored observations. The survival analysis is necessary to solve these problems. Moreover, the time to the occurence of the event of interest is taken into account. The Cox model has been widely used in survival analysis, which can effectively handle the censored data. Cox (1972) proposed the model which is focused on the hazard function. The Cox model is assumed to be λ(t|x) = λ0(t) exp(β^Tx) where λ0(t) is an unspecified baseline hazard at time t and X is the vector of covariates, β is a p-dimensional vector of coefficient. In this thesis, the Cox model is considered under the view point of experimental design. The estimability of the parameter β0 in the Cox model, where β0 denotes the true value of β, and the choice of optimal covariates are investigated. We give new representations of the observed information matrix In(β) and extend results for the Cox model of Andersen and Gill (1982). In this way conditions for the estimability of β0 are formulated. Under some regularity conditions, ∑ is the inverse of the asymptotic variance matrix of the MPLE of β0 in the Cox model and then some properties of the asymptotic variance matrix of the MPLE are highlighted. Based on the results of asymptotic estimability, the calculation of local optimal covariates is considered and shown in examples. In a sensitivity analysis, the efficiency of given covariates is calculated. For neighborhoods of the exponential models, the efficiencies have then been found. It is appeared that for fixed parameters β0, the efficiencies do not change very much for different baseline hazard functions. Some proposals for applicable optimal covariates and a calculation procedure for finding optimal covariates are discussed. Furthermore, the extension of the Cox model where time-dependent coefficient are allowed, is investigated. In this situation, the maximum local partial likelihood estimator for estimating the coefficient function β(·) is described. Based on this estimator, we formulate a new test procedure for testing, whether a one-dimensional coefficient function β(·) has a prespecified parametric form, say β(·; ϑ). The score function derived from the local constant partial likelihood function at d distinct grid points is considered. It is shown that the distribution of the properly standardized quadratic form of this d-dimensional vector under the null hypothesis tends to a Chi-squared distribution. Moreover, the limit statement remains true when replacing the unknown ϑ0 by the MPLE in the hypothetical model and an asymptotic α-test is given by the quantiles or p-values of the limiting Chi-squared distribution. Finally, we propose a bootstrap version of this test. The bootstrap test is only defined for the special case of testing whether the coefficient function is constant. A simulation study illustrates the behavior of the bootstrap test under the null hypothesis and a special alternative. It gives quite good results for the chosen underlying model. References P. K. Andersen and R. D. Gill. Cox's regression model for counting processes: a large samplestudy. Ann. Statist., 10(4):1100{1120, 1982. D. R. Cox. Regression models and life-tables. J. Roy. Statist. Soc. Ser. B, 34:187{220, 1972. R. L. Prentice. A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika, 73(1):1{11, 1986.}, language = {en} } @phdthesis{Welke1996, author = {Welke, Dirk}, title = {Hyperidentit{\"a}ten partieller Algebren}, pages = {104 S.}, year = {1996}, language = {de} } @phdthesis{Wei2008, author = {Wei, Yawei}, title = {Operators on manifolds with edge and boundary with singular trace conditions}, address = {Potsdam}, pages = {128 S.: graph. Darst.}, year = {2008}, language = {en} } @phdthesis{Wei2008, author = {Wei, Yawei}, title = {Operators on Manifolds with Edge and Boundary with Singular Trace Conditions}, address = {Potsdam}, pages = {127 S., : graph. Darst.}, year = {2008}, language = {en} } @phdthesis{Waltz1994, author = {Waltz, Christine}, title = {Adjungierte Polynomideale und duale Typen auf Banachr{\"a}umen und ihre Anwendung}, pages = {109 Bl.}, year = {1994}, language = {de} } @phdthesis{Wallenta2015, author = {Wallenta, Daniel}, title = {Sequences of compact curvature}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87489}, school = {Universit{\"a}t Potsdam}, pages = {viii, 73}, year = {2015}, abstract = {By perturbing the differential of a (cochain-)complex by "small" operators, one obtains what is referred to as quasicomplexes, i.e. a sequence whose curvature is not equal to zero in general. In this situation the cohomology is no longer defined. Note that it depends on the structure of the underlying spaces whether or not an operator is "small." This leads to a magical mix of perturbation and regularisation theory. In the general setting of Hilbert spaces compact operators are "small." In order to develop this theory, many elements of diverse mathematical disciplines, such as functional analysis, differential geometry, partial differential equation, homological algebra and topology have to be combined. All essential basics are summarised in the first chapter of this thesis. This contains classical elements of index theory, such as Fredholm operators, elliptic pseudodifferential operators and characteristic classes. Moreover we study the de Rham complex and introduce Sobolev spaces of arbitrary order as well as the concept of operator ideals. In the second chapter, the abstract theory of (Fredholm) quasicomplexes of Hilbert spaces will be developed. From the very beginning we will consider quasicomplexes with curvature in an ideal class. We introduce the Euler characteristic, the cone of a quasiendomorphism and the Lefschetz number. In particular, we generalise Euler's identity, which will allow us to develop the Lefschetz theory on nonseparable Hilbert spaces. Finally, in the third chapter the abstract theory will be applied to elliptic quasicomplexes with pseudodifferential operators of arbitrary order. We will show that the Atiyah-Singer index formula holds true for those objects and, as an example, we will compute the Euler characteristic of the connection quasicomplex. In addition to this we introduce geometric quasiendomorphisms and prove a generalisation of the Lefschetz fixed point theorem of Atiyah and Bott.}, language = {en} } @phdthesis{Vu2014, author = {Vu, Dinh Phuong}, title = {Using video study to investigate eighth-grade mathematics classrooms in Vietnam}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72464}, school = {Universit{\"a}t Potsdam}, pages = {273}, year = {2014}, abstract = {The International Project for the Evaluation of Educational Achievement (IEA) was formed in the 1950s (Postlethwaite, 1967). Since that time, the IEA has conducted many studies in the area of mathematics, such as the First International Mathematics Study (FIMS) in 1964, the Second International Mathematics Study (SIMS) in 1980-1982, and a series of studies beginning with the Third International Mathematics and Science Study (TIMSS) which has been conducted every 4 years since 1995. According to Stigler et al. (1999), in the FIMS and the SIMS, U.S. students achieved low scores in comparison with students in other countries (p. 1). The TIMSS 1995 "Videotape Classroom Study" was therefore a complement to the earlier studies conducted to learn "more about the instructional and cultural processes that are associated with achievement" (Stigler et al., 1999, p. 1). The TIMSS Videotape Classroom Study is known today as the TIMSS Video Study. From the findings of the TIMSS 1995 Video Study, Stigler and Hiebert (1999) likened teaching to "mountain ranges poking above the surface of the water," whereby they implied that we might see the mountaintops, but we do not see the hidden parts underneath these mountain ranges (pp. 73-78). By watching the videotaped lessons from Germany, Japan, and the United States again and again, they discovered that "the systems of teaching within each country look similar from lesson to lesson. At least, there are certain recurring features [or patterns] that typify many of the lessons within a country and distinguish the lessons among countries" (pp. 77-78). They also discovered that "teaching is a cultural activity," so the systems of teaching "must be understood in relation to the cultural beliefs and assumptions that surround them" (pp. 85, 88). From this viewpoint, one of the purposes of this dissertation was to study some cultural aspects of mathematics teaching and relate the results to mathematics teaching and learning in Vietnam. Another research purpose was to carry out a video study in Vietnam to find out the characteristics of Vietnamese mathematics teaching and compare these characteristics with those of other countries. In particular, this dissertation carried out the following research tasks: - Studying the characteristics of teaching and learning in different cultures and relating the results to mathematics teaching and learning in Vietnam - Introducing the TIMSS, the TIMSS Video Study and the advantages of using video study in investigating mathematics teaching and learning - Carrying out the video study in Vietnam to identify the image, scripts and patterns, and the lesson signature of eighth-grade mathematics teaching in Vietnam - Comparing some aspects of mathematics teaching in Vietnam and other countries and identifying the similarities and differences across countries - Studying the demands and challenges of innovating mathematics teaching methods in Vietnam - lessons from the video studies Hopefully, this dissertation will be a useful reference material for pre-service teachers at education universities to understand the nature of teaching and develop their teaching career.}, language = {en} } @phdthesis{Trump2015, author = {Trump, Stephanie Sonja}, title = {Mathematik in der Physik der Sekundarstufe II!?}, school = {Universit{\"a}t Potsdam}, pages = {214}, year = {2015}, language = {de} } @phdthesis{Trappmann2007, author = {Trappmann, Henryk}, title = {Arborescent numbers : higher arithmetic operations and division trees}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15247}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The overall program "arborescent numbers" is to similarly perform the constructions from the natural numbers (N) to the positive fractional numbers (Q+) to positive real numbers (R+) beginning with (specific) binary trees instead of natural numbers. N can be regarded as the associative binary trees. The binary trees B and the left-commutative binary trees P allow the hassle-free definition of arbitrary high arithmetic operations (hyper ... hyperpowers). To construct the division trees the algebraic structure "coppice" is introduced which is a group with an addition over which the multiplication is right-distributive. Q+ is the initial associative coppice. The present work accomplishes one step in the program "arborescent numbers". That is the construction of the arborescent equivalent(s) of the positive fractional numbers. These equivalents are the "division binary trees" and the "fractional trees". A representation with decidable word problem for each of them is given. The set of functions f:R1->R1 generated from identity by taking powers is isomorphic to P and can be embedded into a coppice by taking inverses.}, language = {en} } @phdthesis{Tinpun2019, author = {Tinpun, Kittisak}, title = {Relative rank of infinite full transformation semigroups with restricted range}, school = {Universit{\"a}t Potsdam}, year = {2019}, language = {en} } @phdthesis{Susanti2013, author = {Susanti, Yeni}, title = {On Particular n-Clones}, address = {Potsdam}, pages = {108 S.}, year = {2013}, language = {en} } @phdthesis{Supaporn2014, author = {Supaporn, Worakrit}, title = {Categorical equivalence of clones}, pages = {89}, year = {2014}, language = {en} } @phdthesis{Srithus2008, author = {Srithus, Ratana}, title = {Algebras derived by hypersubstitutions}, pages = {XIII, 87 Bl.}, year = {2008}, language = {en} } @phdthesis{Solms2017, author = {Solms, Alexander Maximilian}, title = {Integrating nonlinear mixed effects and physiologically-based modeling approaches for the analysis of repeated measurement studies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397070}, school = {Universit{\"a}t Potsdam}, pages = {x, 141}, year = {2017}, abstract = {During the drug discovery \& development process, several phases encompassing a number of preclinical and clinical studies have to be successfully passed to demonstrate safety and efficacy of a new drug candidate. As part of these studies, the characterization of the drug's pharmacokinetics (PK) is an important aspect, since the PK is assumed to strongly impact safety and efficacy. To this end, drug concentrations are measured repeatedly over time in a study population. The objectives of such studies are to describe the typical PK time-course and the associated variability between subjects. Furthermore, underlying sources significantly contributing to this variability, e.g. the use of comedication, should be identified. The most commonly used statistical framework to analyse repeated measurement data is the nonlinear mixed effect (NLME) approach. At the same time, ample knowledge about the drug's properties already exists and has been accumulating during the discovery \& development process: Before any drug is tested in humans, detailed knowledge about the PK in different animal species has to be collected. This drug-specific knowledge and general knowledge about the species' physiology is exploited in mechanistic physiological based PK (PBPK) modeling approaches -it is, however, ignored in the classical NLME modeling approach. Mechanistic physiological based models aim to incorporate relevant and known physiological processes which contribute to the overlying process of interest. In comparison to data--driven models they are usually more complex from a mathematical perspective. For example, in many situations, the number of model parameters outrange the number of measurements and thus reliable parameter estimation becomes more complex and partly impossible. As a consequence, the integration of powerful mathematical estimation approaches like the NLME modeling approach -which is widely used in data-driven modeling -and the mechanistic modeling approach is not well established; the observed data is rather used as a confirming instead of a model informing and building input. Another aggravating circumstance of an integrated approach is the inaccessibility to the details of the NLME methodology so that these approaches can be adapted to the specifics and needs of mechanistic modeling. Despite the fact that the NLME modeling approach exists for several decades, details of the mathematical methodology is scattered around a wide range of literature and a comprehensive, rigorous derivation is lacking. Available literature usually only covers selected parts of the mathematical methodology. Sometimes, important steps are not described or are only heuristically motivated, e.g. the iterative algorithm to finally determine the parameter estimates. Thus, in the present thesis the mathematical methodology of NLME modeling is systemically described and complemented to a comprehensive description, comprising the common theme from ideas and motivation to the final parameter estimation. Therein, new insights for the interpretation of different approximation methods used in the context of the NLME modeling approach are given and illustrated; furthermore, similarities and differences between them are outlined. Based on these findings, an expectation-maximization (EM) algorithm to determine estimates of a NLME model is described. Using the EM algorithm and the lumping methodology by Pilari2010, a new approach on how PBPK and NLME modeling can be combined is presented and exemplified for the antibiotic levofloxacin. Therein, the lumping identifies which processes are informed by the available data and the respective model reduction improves the robustness in parameter estimation. Furthermore, it is shown how apriori known factors influencing the variability and apriori known unexplained variability is incorporated to further mechanistically drive the model development. Concludingly, correlation between parameters and between covariates is automatically accounted for due to the mechanistic derivation of the lumping and the covariate relationships. A useful feature of PBPK models compared to classical data-driven PK models is in the possibility to predict drug concentration within all organs and tissue in the body. Thus, the resulting PBPK model for levofloxacin is used to predict drug concentrations and their variability within soft tissues which are the site of action for levofloxacin. These predictions are compared with data of muscle and adipose tissue obtained by microdialysis, which is an invasive technique to measure a proportion of drug in the tissue, allowing to approximate the concentrations in the interstitial fluid of tissues. Because, so far, comparing human in vivo tissue PK and PBPK predictions are not established, a new conceptual framework is derived. The comparison of PBPK model predictions and microdialysis measurements shows an adequate agreement and reveals further strengths of the presented new approach. We demonstrated how mechanistic PBPK models, which are usually developed in the early stage of drug development, can be used as basis for model building in the analysis of later stages, i.e. in clinical studies. As a consequence, the extensively collected and accumulated knowledge about species and drug are utilized and updated with specific volunteer or patient data. The NLME approach combined with mechanistic modeling reveals new insights for the mechanistic model, for example identification and quantification of variability in mechanistic processes. This represents a further contribution to the learn \& confirm paradigm across different stages of drug development. Finally, the applicability of mechanism--driven model development is demonstrated on an example from the field of Quantitative Psycholinguistics to analyse repeated eye movement data. Our approach gives new insight into the interpretation of these experiments and the processes behind.}, language = {en} } @phdthesis{Seiler1997, author = {Seiler, J{\"o}rg}, title = {Pseudodifferential Calculus on Manifolds with Non-Compact Edges}, address = {Potsdam}, pages = {161 S.}, year = {1997}, language = {en} } @phdthesis{Schwarz2020, author = {Schwarz, Michael}, title = {Nodal domains and boundary representation for Dirichlet forms}, school = {Universit{\"a}t Potsdam}, pages = {164}, year = {2020}, language = {en} } @phdthesis{Schopka2006, author = {Schopka, Sven}, title = {Noncommutative Einstein Manifolds}, address = {Potsdam}, pages = {vi, 94 S. : graph. Darst.}, year = {2006}, language = {en} } @phdthesis{Schindler2023, author = {Schindler, Daniel}, title = {Mathematical modeling and simulation of protrusion-driven cell dynamics}, doi = {10.25932/publishup-61327}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613275}, school = {Universit{\"a}t Potsdam}, pages = {VI, 161}, year = {2023}, abstract = {Amoeboid cell motility takes place in a variety of biomedical processes such as cancer metastasis, embryonic morphogenesis, and wound healing. In contrast to other forms of cell motility, it is mainly driven by substantial cell shape changes. Based on the interplay of explorative membrane protrusions at the front and a slower-acting membrane retraction at the rear, the cell moves in a crawling kind of way. Underlying these protrusions and retractions are multiple physiological processes resulting in changes of the cytoskeleton, a meshwork of different multi-functional proteins. The complexity and versatility of amoeboid cell motility raise the need for novel computational models based on a profound theoretical framework to analyze and simulate the dynamics of the cell shape. The objective of this thesis is the development of (i) a mathematical framework to describe contour dynamics in time and space, (ii) a computational model to infer expansion and retraction characteristics of individual cell tracks and to produce realistic contour dynamics, (iii) and a complementing Open Science approach to make the above methods fully accessible and easy to use. In this work, we mainly used single-cell recordings of the model organism Dictyostelium discoideum. Based on stacks of segmented microscopy images, we apply a Bayesian approach to obtain smooth representations of the cell membrane, so-called cell contours. We introduce a one-parameter family of regularized contour flows to track reference points on the contour (virtual markers) in time and space. This way, we define a coordinate system to visualize local geometric and dynamic quantities of individual contour dynamics in so-called kymograph plots. In particular, we introduce the local marker dispersion as a measure to identify membrane protrusions and retractions in a fully automated way. This mathematical framework is the basis of a novel contour dynamics model, which consists of three biophysiologically motivated components: one stochastic term, accounting for membrane protrusions, and two deterministic terms to control the shape and area of the contour, which account for membrane retractions. Our model provides a fully automated approach to infer protrusion and retraction characteristics from experimental cell tracks while being also capable of simulating realistic and qualitatively different contour dynamics. Furthermore, the model is used to classify two different locomotion types: the amoeboid and a so-called fan-shaped type. With the complementing Open Science approach, we ensure a high standard regarding the usability of our methods and the reproducibility of our research. In this context, we introduce our software publication named AmoePy, an open-source Python package to segment, analyze, and simulate amoeboid cell motility. Furthermore, we describe measures to improve its usability and extensibility, e.g., by detailed run instructions and an automatically generated source code documentation, and to ensure its functionality and stability, e.g., by automatic software tests, data validation, and a hierarchical package structure. The mathematical approaches of this work provide substantial improvements regarding the modeling and analysis of amoeboid cell motility. We deem the above methods, due to their generalized nature, to be of greater value for other scientific applications, e.g., varying organisms and experimental setups or the transition from unicellular to multicellular movement. Furthermore, we enable other researchers from different fields, i.e., mathematics, biophysics, and medicine, to apply our mathematical methods. By following Open Science standards, this work is of greater value for the cell migration community and a potential role model for other Open Science contributions.}, language = {en} } @phdthesis{Schanner2022, author = {Schanner, Maximilian Arthus}, title = {Correlation based modeling of the archeomagnetic field}, doi = {10.25932/publishup-55587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555875}, school = {Universit{\"a}t Potsdam}, pages = {vii, 146}, year = {2022}, abstract = {The geomagnetic main field is vital for live on Earth, as it shields our habitat against the solar wind and cosmic rays. It is generated by the geodynamo in the Earth's outer core and has a rich dynamic on various timescales. Global models of the field are used to study the interaction of the field and incoming charged particles, but also to infer core dynamics and to feed numerical simulations of the geodynamo. Modern satellite missions, such as the SWARM or the CHAMP mission, support high resolution reconstructions of the global field. From the 19 th century on, a global network of magnetic observatories has been established. It is growing ever since and global models can be constructed from the data it provides. Geomagnetic field models that extend further back in time rely on indirect observations of the field, i.e. thermoremanent records such as burnt clay or volcanic rocks and sediment records from lakes and seas. These indirect records come with (partially very large) uncertainties, introduced by the complex measurement methods and the dating procedure. Focusing on thermoremanent records only, the aim of this thesis is the development of a new modeling strategy for the global geomagnetic field during the Holocene, which takes the uncertainties into account and produces realistic estimates of the reliability of the model. This aim is approached by first considering snapshot models, in order to address the irregular spatial distribution of the records and the non-linear relation of the indirect observations to the field itself. In a Bayesian setting, a modeling algorithm based on Gaussian process regression is developed and applied to binned data. The modeling algorithm is then extended to the temporal domain and expanded to incorporate dating uncertainties. Finally, the algorithm is sequentialized to deal with numerical challenges arising from the size of the Holocene dataset. The central result of this thesis, including all of the aspects mentioned, is a new global geomagnetic field model. It covers the whole Holocene, back until 12000 BCE, and we call it ArchKalmag14k. When considering the uncertainties that are produced together with the model, it is evident that before 6000 BCE the thermoremanent database is not sufficient to support global models. For times more recent, ArchKalmag14k can be used to analyze features of the field under consideration of posterior uncertainties. The algorithm for generating ArchKalmag14k can be applied to different datasets and is provided to the community as an open source python package.}, language = {en} } @phdthesis{Schachtschneider2011, author = {Schachtschneider, Reyko}, title = {Error distribution in regional inversions of potential fields from satellite data}, address = {Potsdam}, pages = {118 S.}, year = {2011}, language = {en} } @phdthesis{Sarasit2011, author = {Sarasit, Napaporn}, title = {Algebraic properties of sets of terms}, address = {Potsdam}, pages = {91 S.}, year = {2011}, language = {en} } @phdthesis{Santilli2017, author = {Santilli, Mario}, title = {Higher order rectifiability in Euclidean space}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403632}, school = {Universit{\"a}t Potsdam}, pages = {45}, year = {2017}, abstract = {The first main goal of this thesis is to develop a concept of approximate differentiability of higher order for subsets of the Euclidean space that allows to characterize higher order rectifiable sets, extending somehow well known facts for functions. We emphasize that for every subset A of the Euclidean space and for every integer k ≥ 2 we introduce the approximate differential of order k of A and we prove it is a Borel map whose domain is a (possibly empty) Borel set. This concept could be helpful to deal with higher order rectifiable sets in applications. The other goal is to extend to general closed sets a well known theorem of Alberti on the second order rectifiability properties of the boundary of convex bodies. The Alberti theorem provides a stratification of second order rectifiable subsets of the boundary of a convex body based on the dimension of the (convex) normal cone. Considering a suitable generalization of this normal cone for general closed subsets of the Euclidean space and employing some results from the first part we can prove that the same stratification exists for every closed set.}, language = {en} } @phdthesis{Samaras2016, author = {Samaras, Stefanos}, title = {Microphysical retrieval of non-spherical aerosol particles using regularized inversion of multi-wavelength lidar data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396528}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 190}, year = {2016}, abstract = {Numerous reports of relatively rapid climate changes over the past century make a clear case of the impact of aerosols and clouds, identified as sources of largest uncertainty in climate projections. Earth's radiation balance is altered by aerosols depending on their size, morphology and chemical composition. Competing effects in the atmosphere can be further studied by investigating the evolution of aerosol microphysical properties, which are the focus of the present work. The aerosol size distribution, the refractive index, and the single scattering albedo are commonly used such properties linked to aerosol type, and radiative forcing. Highly advanced lidars (light detection and ranging) have reduced aerosol monitoring and optical profiling into a routine process. Lidar data have been widely used to retrieve the size distribution through the inversion of the so-called Lorenz-Mie model (LMM). This model offers a reasonable treatment for spherically approximated particles, it no longer provides, though, a viable description for other naturally occurring arbitrarily shaped particles, such as dust particles. On the other hand, non-spherical geometries as simple as spheroids reproduce certain optical properties with enhanced accuracy. Motivated by this, we adapt the LMM to accommodate the spheroid-particle approximation introducing the notion of a two-dimensional (2D) shape-size distribution. Inverting only a few optical data points to retrieve the shape-size distribution is classified as a non-linear ill-posed problem. A brief mathematical analysis is presented which reveals the inherent tendency towards highly oscillatory solutions, explores the available options for a generalized solution through regularization methods and quantifies the ill-posedness. The latter will improve our understanding on the main cause fomenting instability in the produced solution spaces. The new approach facilitates the exploitation of additional lidar data points from depolarization measurements, associated with particle non-sphericity. However, the generalization of LMM vastly increases the complexity of the problem. The underlying theory for the calculation of the involved optical cross sections (T-matrix theory) is computationally so costly, that would limit a retrieval analysis to an unpractical point. Moreover the discretization of the model equation by a 2D collocation method, proposed in this work, involves double integrations which are further time consuming. We overcome these difficulties by using precalculated databases and a sophisticated retrieval software (SphInX: Spheroidal Inversion eXperiments) especially developed for our purposes, capable of performing multiple-dataset inversions and producing a wide range of microphysical retrieval outputs. Hybrid regularization in conjunction with minimization processes is used as a basis for our algorithms. Synthetic data retrievals are performed simulating various atmospheric scenarios in order to test the efficiency of different regularization methods. The gap in contemporary literature in providing full sets of uncertainties in a wide variety of numerical instances is of major concern here. For this, the most appropriate methods are identified through a thorough analysis on an overall-behavior basis regarding accuracy and stability. The general trend of the initial size distributions is captured in our numerical experiments and the reconstruction quality depends on data error level. Moreover, the need for more or less depolarization points is explored for the first time from the point of view of the microphysical retrieval. Finally, our approach is tested in various measurement cases giving further insight for future algorithm improvements.}, language = {en} } @phdthesis{Raetsch2005, author = {R{\"a}tsch, Thoralf}, title = {On the Equi-Constistency of the failure of the GAP-1 transfer property and an inaccessible cardinal}, address = {Potsdam}, pages = {99 S.}, year = {2005}, language = {en} } @phdthesis{Rungrottheera2013, author = {Rungrottheera, Wannarut}, title = {Corner pseudo-differential operators}, address = {Potsdam}, pages = {139 S.}, year = {2013}, language = {en} } @phdthesis{Rudorf2014, author = {Rudorf, Sophia}, title = {Protein Synthesis by Ribosomes}, pages = {xii, 145}, year = {2014}, language = {en} } @phdthesis{Rothe2020, author = {Rothe, Viktoria}, title = {Das Yamabe-Problem auf global-hyperbolischen Lorentz-Mannigfaltigkeiten}, doi = {10.25932/publishup-48601}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-486012}, school = {Universit{\"a}t Potsdam}, pages = {ix, 65}, year = {2020}, abstract = {Im Jahre 1960 behauptete Yamabe folgende Aussage bewiesen zu haben: Auf jeder kompakten Riemannschen Mannigfaltigkeit (M,g) der Dimension n ≥ 3 existiert eine zu g konform {\"a}quivalente Metrik mit konstanter Skalarkr{\"u}mmung. Diese Aussage ist {\"a}quivalent zur Existenz einer L{\"o}sung einer bestimmten semilinearen elliptischen Differentialgleichung, der Yamabe-Gleichung. 1968 fand Trudinger einen Fehler in seinem Beweis und infolgedessen besch{\"a}ftigten sich viele Mathematiker mit diesem nach Yamabe benannten Yamabe-Problem. In den 80er Jahren konnte durch die Arbeiten von Trudinger, Aubin und Schoen gezeigt werden, dass diese Aussage tats{\"a}chlich zutrifft. Dadurch ergeben sich viele Vorteile, z.B. kann beim Analysieren von konform invarianten partiellen Differentialgleichungen auf kompakten Riemannschen Mannigfaltigkeiten die Skalarkr{\"u}mmung als konstant vorausgesetzt werden. Es stellt sich nun die Frage, ob die entsprechende Aussage auch auf Lorentz-Mannigfaltigkeiten gilt. Das Lorentz'sche Yamabe Problem lautet somit: Existiert zu einer gegebenen r{\"a}umlich kompakten global-hyperbolischen Lorentz-Mannigfaltigkeit (M,g) eine zu g konform {\"a}quivalente Metrik mit konstanter Skalarkr{\"u}mmung? Das Ziel dieser Arbeit ist es, dieses Problem zu untersuchen. Bei der sich aus dieser Fragestellung ergebenden Yamabe-Gleichung handelt es sich um eine semilineare Wellengleichung, deren L{\"o}sung eine positive glatte Funktion ist und aus der sich der konforme Faktor ergibt. Um die f{\"u}r die Behandlung des Yamabe-Problems ben{\"o}tigten Grundlagen so allgemein wie m{\"o}glich zu halten, wird im ersten Teil dieser Arbeit die lokale Existenztheorie f{\"u}r beliebige semilineare Wellengleichungen f{\"u}r Schnitte auf Vektorb{\"u}ndeln im Rahmen eines Cauchy-Problems entwickelt. Hierzu wird der Umkehrsatz f{\"u}r Banachr{\"a}ume angewendet, um mithilfe von bereits existierenden Existenzergebnissen zu linearen Wellengleichungen, Existenzaussagen zu semilinearen Wellengleichungen machen zu k{\"o}nnen. Es wird bewiesen, dass, falls die Nichtlinearit{\"a}t bestimmte Bedingungen erf{\"u}llt, eine fast zeitglobale L{\"o}sung des Cauchy-Problems f{\"u}r kleine Anfangsdaten sowie eine zeitlokale L{\"o}sung f{\"u}r beliebige Anfangsdaten existiert. Der zweite Teil der Arbeit befasst sich mit der Yamabe-Gleichung auf global-hyperbolischen Lorentz-Mannigfaltigkeiten. Zuerst wird gezeigt, dass die Nichtlinearit{\"a}t der Yamabe-Gleichung die geforderten Bedingungen aus dem ersten Teil erf{\"u}llt, so dass, falls die Skalarkr{\"u}mmung der gegebenen Metrik nahe an einer Konstanten liegt, kleine Anfangsdaten existieren, so dass die Yamabe-Gleichung eine fast zeitglobale L{\"o}sung besitzt. Mithilfe von Energieabsch{\"a}tzungen wird anschließend f{\"u}r 4-dimensionale global-hyperbolische Lorentz-Mannigfaltigkeiten gezeigt, dass unter der Annahme, dass die konstante Skalarkr{\"u}mmung der konform {\"a}quivalenten Metrik nichtpositiv ist, eine zeitglobale L{\"o}sung der Yamabe-Gleichung existiert, die allerdings nicht notwendigerweise positiv ist. Außerdem wird gezeigt, dass, falls die H2-Norm der Skalarkr{\"u}mmung bez{\"u}glich der gegebenen Metrik auf einem kompakten Zeitintervall auf eine bestimmte Weise beschr{\"a}nkt ist, die L{\"o}sung positiv auf diesem Zeitintervall ist. Hierbei wird ebenfalls angenommen, dass die konstante Skalarkr{\"u}mmung der konform {\"a}quivalenten Metrik nichtpositiv ist. Falls zus{\"a}tzlich hierzu gilt, dass die Skalarkr{\"u}mmung bez{\"u}glich der gegebenen Metrik negativ ist und die Metrik gewisse Bedingungen erf{\"u}llt, dann ist die L{\"o}sung f{\"u}r alle Zeiten in einem kompakten Zeitintervall positiv, auf dem der Gradient der Skalarkr{\"u}mmung auf eine bestimmte Weise beschr{\"a}nkt ist. In beiden F{\"a}llen folgt unter den angef{\"u}hrten Bedingungen die Existenz einer zeitglobalen positiven L{\"o}sung, falls M = I x Σ f{\"u}r ein beschr{\"a}nktes offenes Intervall I ist. Zum Schluss wird f{\"u}r M = R x Σ ein Beispiel f{\"u}r die Nichtexistenz einer globalen positiven L{\"o}sung angef{\"u}hrt.}, language = {de} } @phdthesis{Rosenberger2006, author = {Rosenberger, Elke}, title = {Asymptotic spectral analysis and tunnelling for a class of difference operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7393}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {We analyze the asymptotic behavior in the limit epsilon to zero for a wide class of difference operators H_epsilon = T_epsilon + V_epsilon with underlying multi-well potential. They act on the square summable functions on the lattice (epsilon Z)^d. We start showing the validity of an harmonic approximation and construct WKB-solutions at the wells. Then we construct a Finslerian distance d induced by H and show that short integral curves are geodesics and d gives the rate for the exponential decay of Dirichlet eigenfunctions. In terms of this distance, we give sharp estimates for the interaction between the wells and construct the interaction matrix.}, subject = {Mathematische Physik}, language = {en} } @phdthesis{Romanovskiy2004, author = {Romanovskiy, Nikolai}, title = {Systems of elasticity theory}, pages = {59 S.}, year = {2004}, language = {en} } @phdthesis{Reinhardt2020, author = {Reinhardt, Maria}, title = {Hybrid filters and multi-scale models}, doi = {10.25932/publishup-47435}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474356}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 102}, year = {2020}, abstract = {This thesis is concerned with Data Assimilation, the process of combining model predictions with observations. So called filters are of special interest. One is inter- ested in computing the probability distribution of the state of a physical process in the future, given (possibly) imperfect measurements. This is done using Bayes' rule. The first part focuses on hybrid filters, that bridge between the two main groups of filters: ensemble Kalman filters (EnKF) and particle filters. The first are a group of very stable and computationally cheap algorithms, but they request certain strong assumptions. Particle filters on the other hand are more generally applicable, but computationally expensive and as such not always suitable for high dimensional systems. Therefore it exists a need to combine both groups to benefit from the advantages of each. This can be achieved by splitting the likelihood function, when assimilating a new observation and treating one part of it with an EnKF and the other part with a particle filter. The second part of this thesis deals with the application of Data Assimilation to multi-scale models and the problems that arise from that. One of the main areas of application for Data Assimilation techniques is predicting the development of oceans and the atmosphere. These processes involve several scales and often balance rela- tions between the state variables. The use of Data Assimilation procedures most often violates relations of that kind, which leads to unrealistic and non-physical pre- dictions of the future development of the process eventually. This work discusses the inclusion of a post-processing step after each assimilation step, in which a minimi- sation problem is solved, which penalises the imbalance. This method is tested on four different models, two Hamiltonian systems and two spatially extended models, which adds even more difficulties.}, language = {en} } @phdthesis{Reichel1994, author = {Reichel, Mario}, title = {Bi-Homonorphismen und Hyperidentit{\"a}ten}, publisher = {Univ.}, address = {Potsdam}, pages = {VI, 132, III Bl.}, year = {1994}, language = {de} } @phdthesis{Rattana2013, author = {Rattana, Amornrat}, title = {Direct and inverse sturm-liouville problems of order four}, address = {Potsdam}, pages = {121 S.}, year = {2013}, language = {en} } @phdthesis{Ramadan2010, author = {Ramadan, Ayad}, title = {Statistical model for categorical data}, address = {Potsdam}, pages = {iv, 100 S. : graph. Darst.}, year = {2010}, language = {en} } @phdthesis{Rainer1994, author = {Rainer, Martin}, title = {The topology of the space of real LIE algebras up to dimension 4 with applications to homogeneous cosmological models}, publisher = {Univ.}, pages = {93 S.}, year = {1994}, language = {en} } @phdthesis{Rafler2009, author = {Rafler, Mathias}, title = {Gaussian loop- and P{\´o}lya processes : a point process approach}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-029-8}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-38706}, school = {Universit{\"a}t Potsdam}, pages = {ix, 162}, year = {2009}, abstract = {This thesis considers on the one hand the construction of point processes via conditional intensities, motivated by the partial Integration of the Campbell measure of a point process. Under certain assumptions on the intensity the existence of such a point process is shown. A fundamental example turns out to be the P{\´o}lya sum process, whose conditional intensity is a generalisation of the P{\´o}lya urn dynamics. A Cox process representation for that point process is shown. A further process considered is a Poisson process of Gaussian loops, which represents a noninteracting particle system derived from the discussion of indistinguishable particles. Both processes are used to define particle systems locally, for which thermodynamic limits are determined.}, language = {en} } @phdthesis{Penisson2010, author = {P{\´e}nisson, Sophie}, title = {Conditional limit theorems for multitype branching processes and illustration in epidemiological risk analysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45307}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {This thesis is concerned with the issue of extinction of populations composed of different types of individuals, and their behavior before extinction and in case of a very late extinction. We approach this question firstly from a strictly probabilistic viewpoint, and secondly from the standpoint of risk analysis related to the extinction of a particular model of population dynamics. In this context we propose several statistical tools. The population size is modeled by a branching process, which is either a continuous-time multitype Bienaym{\´e}-Galton-Watson process (BGWc), or its continuous-state counterpart, the multitype Feller diffusion process. We are interested in different kinds of conditioning on non-extinction, and in the associated equilibrium states. These ways of conditioning have been widely studied in the monotype case. However the literature on multitype processes is much less extensive, and there is no systematic work establishing connections between the results for BGWc processes and those for Feller diffusion processes. In the first part of this thesis, we investigate the behavior of the population before its extinction by conditioning the associated branching process X_t on non-extinction (X_t≠0), or more generally on non-extinction in a near future 0≤θ<∞ (X_{t+θ}≠0), and by letting t tend to infinity. We prove the result, new in the multitype framework and for θ>0, that this limit exists and is non-degenerate. This reflects a stationary behavior for the dynamics of the population conditioned on non-extinction, and provides a generalization of the so-called Yaglom limit, corresponding to the case θ=0. In a second step we study the behavior of the population in case of a very late extinction, obtained as the limit when θ tends to infinity of the process conditioned by X_{t+θ}≠0. The resulting conditioned process is a known object in the monotype case (sometimes referred to as Q-process), and has also been studied when X_t is a multitype Feller diffusion process. We investigate the not yet considered case where X_t is a multitype BGWc process and prove the existence of the associated Q-process. In addition, we examine its properties, including the asymptotic ones, and propose several interpretations of the process. Finally, we are interested in interchanging the limits in t and θ, as well as in the not yet studied commutativity of these limits with respect to the high-density-type relationship between BGWc processes and Feller processes. We prove an original and exhaustive list of all possible exchanges of limit (long-time limit in t, increasing delay of extinction θ, diffusion limit). The second part of this work is devoted to the risk analysis related both to the extinction of a population and to its very late extinction. We consider a branching population model (arising notably in the epidemiological context) for which a parameter related to the first moments of the offspring distribution is unknown. We build several estimators adapted to different stages of evolution of the population (phase growth, decay phase, and decay phase when extinction is expected very late), and prove moreover their asymptotic properties (consistency, normality). In particular, we build a least squares estimator adapted to the Q-process, allowing a prediction of the population development in the case of a very late extinction. This would correspond to the best or to the worst-case scenario, depending on whether the population is threatened or invasive. These tools enable us to study the extinction phase of the Bovine Spongiform Encephalopathy epidemic in Great Britain, for which we estimate the infection parameter corresponding to a possible source of horizontal infection persisting after the removal in 1988 of the major route of infection (meat and bone meal). This allows us to predict the evolution of the spread of the disease, including the year of extinction, the number of future cases and the number of infected animals. In particular, we produce a very fine analysis of the evolution of the epidemic in the unlikely event of a very late extinction.}, language = {en} } @phdthesis{Pedeches2017, author = {P{\´e}d{\`e}ches, Laure}, title = {Stochastic models for collective motions of populations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-405491}, school = {Universit{\"a}t Potsdam}, pages = {187}, year = {2017}, abstract = {Stochastisches Modell f{\"u}r kollektive Bewegung von Populationen In dieser Doktorarbeit befassen wir uns mit stochastischen Systemen, die eines der mysteri{\"o}sesten biologischen Ph{\"a}nomene als Modell darstellen: die kollektive Bewegung von Gemeinschaften. Diese werden bei V{\"o}gel- und Fischschw{\"a}rmen, aber auch bei manchen Bakterien, Viehherden oder gar bei Menschen beobachtet. Dieser Verhaltenstyp spielt ebenfalls in anderen Bereichen wie Finanzwesen, Linguistik oder auch Robotik eine Rolle. Wir nehmen uns der Dynamik einer Gruppe von N Individuen, insbesondere zweier asymptotischen Verhaltenstypen an. Einerseits befassen wir uns mit den Eigenschaften der Ergodizit{\"a}t in Langzeit: Existenz einer invarianten Wahrscheinlichkeitsverteilung durch Ljapunow-Funktionen, und Konvergenzrate der {\"U}bergangshalbgruppe gegen diese Wahrscheinlichkeit. Eine ebenfalls zentrale Thematik unserer Forschung ist der Begriff Flocking: es wird damit definiert, dass eine Gruppe von Individuen einen dynamischen Konsens ohne hierarchische Struktur erreichen kann; mathematisch gesehen entspricht dies der Aneinanderreihung der Geschwindigkeiten und dem Zusammenkommen des Schwarmes. Andererseits gehen wir das Ph{\"a}nomen der "Propagation of Chaos" an, wenn die Anzahl N der Teilchen ins Unendliche tendiert: die Bewegungen der jeweiligen Individuen werden asymptotisch unabh{\"a}ngig. Unser Ausgangspunkt ist das Cucker-Smale-Modell, ein deterministisches kinetisches Molekular-Modell f{\"u}r eine Gruppe ohne hierarchische Struktur. Die Wechselwirkung zwischen zwei Teilchen variiert gem{\"a}ß deren "Kommunikationsrate", die wiederum von deren relativen Entfernung abh{\"a}ngt und polynomisch abnimmt. Im ersten Kapitel adressieren wir das asymptotische Verhalten eines Cucker-Smale-Modells mit Rauschst{\"o}rung und dessen Varianten. Kapitel 2 stellt mehrere Definitionen des Flockings in einem Zufallsrahmen dar: diverse stochastische Systeme, die verschiedenen Rauschformen entsprechen (die eine gest{\"o}rte Umgebung, den "freien Willen" des jeweiligen Individuums oder eine unterbrochene {\"U}bertragung suggerieren) werden im Zusammenhang mit diesen Begriffen unter die Lupe genommen. Das dritte Kapitel basiert auf der "Cluster Expansion"-Methode aus der statistischen Mechanik. Wir beweisen die exponentielle Ergodizit{\"a}t von gewissen nicht-Markow-Prozessen mit nicht-glattem Drift und wenden diese Ergebnisse auf St{\"o}rungen des Ornstein-Uhlenbeck-Prozesses an. Im letzten Teil, nehmen wir uns der zweidimensionalen parabolisch-elliptischen Gleichung von Keller-Segel an. Wir beweisen die Existenz einer L{\"o}sung, welche in gewisser Hinsicht einzig ist, indem wir, mittels Vergleich mit Bessel-Prozessen und der Dirichlet Formtheorie, m{\"o}gliche Stoßtypen zwischen den Teilchen ermitteln.}, language = {en} } @phdthesis{Pornsawad2010, author = {Pornsawad, Pornsarp}, title = {Solution of nonlinear inverse ill-posed problems via Runge-Kutta methods}, address = {Potsdam}, pages = {104 S.}, year = {2010}, language = {en} } @phdthesis{Plewnia1997, author = {Plewnia, Eckart}, title = {Approximationstheorie homogener Polynome auf Banachr{\"a}umen}, pages = {94 Bl.}, year = {1997}, language = {de} } @phdthesis{Pirhayati2016, author = {Pirhayati, Mohammad}, title = {Edge operators and boundary value problems}, school = {Universit{\"a}t Potsdam}, pages = {VI, 119}, year = {2016}, language = {en} } @phdthesis{Pincus2000, author = {Pincus, Richard}, title = {Stochastische Ordnungsrelationen Multivarianter Verteilungsfamilien}, pages = {112 S.}, year = {2000}, language = {de} } @phdthesis{Pibaljommee2005, author = {Pibaljommee, Bundit}, title = {M-solid Pseudovarieties}, address = {Potsdam}, pages = {x, 95 S.}, year = {2005}, language = {en} } @phdthesis{Perera2021, author = {Perera, Upeksha}, title = {Solutions of direct and inverse Sturm-Liouville problems}, doi = {10.25932/publishup-53006}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-530064}, school = {Universit{\"a}t Potsdam}, pages = {x, 109}, year = {2021}, abstract = {Lie group method in combination with Magnus expansion is utilized to develop a universal method applicable to solving a Sturm-Liouville Problem (SLP) of any order with arbitrary boundary conditions. It is shown that the method has ability to solve direct regular and some singular SLPs of even orders (tested up to order eight), with a mix of boundary conditions (including non-separable and finite singular endpoints), accurately and efficiently. The present technique is successfully applied to overcome the difficulties in finding suitable sets of eigenvalues so that the inverse SLP problem can be effectively solved. Next, a concrete implementation to the inverse Sturm-Liouville problem algorithm proposed by Barcilon (1974) is provided. Furthermore, computational feasibility and applicability of this algorithm to solve inverse Sturm-Liouville problems of order n=2,4 is verified successfully. It is observed that the method is successful even in the presence of significant noise, provided that the assumptions of the algorithm are satisfied. In conclusion, this work provides methods that can be adapted successfully for solving a direct (regular/singular) or inverse SLP of an arbitrary order with arbitrary boundary conditions.}, language = {en} } @phdthesis{Orellana1998, author = {Orellana, Juan B. Gil}, title = {Heat trace asymptotics for cone differential operators}, pages = {89 S. : graph. Darst.}, year = {1998}, language = {en} } @phdthesis{Oancea2021, author = {Oancea, Marius-Adrian}, title = {Spin Hall effects in general relativity}, doi = {10.25932/publishup-50229}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-502293}, school = {Universit{\"a}t Potsdam}, pages = {vii, 123}, year = {2021}, abstract = {The propagation of test fields, such as electromagnetic, Dirac or linearized gravity, on a fixed spacetime manifold is often studied by using the geometrical optics approximation. In the limit of infinitely high frequencies, the geometrical optics approximation provides a conceptual transition between the test field and an effective point-particle description. The corresponding point-particles, or wave rays, coincide with the geodesics of the underlying spacetime. For most astrophysical applications of interest, such as the observation of celestial bodies, gravitational lensing, or the observation of cosmic rays, the geometrical optics approximation and the effective point-particle description represent a satisfactory theoretical model. However, the geometrical optics approximation gradually breaks down as test fields of finite frequency are considered. In this thesis, we consider the propagation of test fields on spacetime, beyond the leading-order geometrical optics approximation. By performing a covariant Wentzel-Kramers-Brillouin analysis for test fields, we show how higher-order corrections to the geometrical optics approximation can be considered. The higher-order corrections are related to the dynamics of the spin internal degree of freedom of the considered test field. We obtain an effective point-particle description, which contains spin-dependent corrections to the geodesic motion obtained using geometrical optics. This represents a covariant generalization of the well-known spin Hall effect, usually encountered in condensed matter physics and in optics. Our analysis is applied to electromagnetic and massive Dirac test fields, but it can easily be extended to other fields, such as linearized gravity. In the electromagnetic case, we present several examples where the gravitational spin Hall effect of light plays an important role. These include the propagation of polarized light rays on black hole spacetimes and cosmological spacetimes, as well as polarization-dependent effects on the shape of black hole shadows. Furthermore, we show that our effective point-particle equations for polarized light rays reproduce well-known results, such as the spin Hall effect of light in an inhomogeneous medium, and the relativistic Hall effect of polarized electromagnetic wave packets encountered in Minkowski spacetime.}, language = {en} } @phdthesis{Nehring2012, author = {Nehring, Benjamin}, title = {Point processes in statistical mechanics : a cluster expansion approach}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62682}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {A point process is a mechanism, which realizes randomly locally finite point measures. One of the main results of this thesis is an existence theorem for a new class of point processes with a so called signed Levy pseudo measure L, which is an extension of the class of infinitely divisible point processes. The construction approach is a combination of the classical point process theory, as developed by Kerstan, Matthes and Mecke, with the method of cluster expansions from statistical mechanics. Here the starting point is a family of signed Radon measures, which defines on the one hand the Levy pseudo measure L, and on the other hand locally the point process. The relation between L and the process is the following: this point process solves the integral cluster equation determined by L. We show that the results from the classical theory of infinitely divisible point processes carry over in a natural way to the larger class of point processes with a signed Levy pseudo measure. In this way we obtain e.g. a criterium for simplicity and a characterization through the cluster equation, interpreted as an integration by parts formula, for such point processes. Our main result in chapter 3 is a representation theorem for the factorial moment measures of the above point processes. With its help we will identify the permanental respective determinantal point processes, which belong to the classes of Boson respective Fermion processes. As a by-product we obtain a representation of the (reduced) Palm kernels of infinitely divisible point processes. In chapter 4 we see how the existence theorem enables us to construct (infinitely extended) Gibbs, quantum-Bose and polymer processes. The so called polymer processes seem to be constructed here for the first time. In the last part of this thesis we prove that the family of cluster equations has certain stability properties with respect to the transformation of its solutions. At first this will be used to show how large the class of solutions of such equations is, and secondly to establish the cluster theorem of Kerstan, Matthes and Mecke in our setting. With its help we are able to enlarge the class of Polya processes to the so called branching Polya processes. The last sections of this work are about thinning and splitting of point processes. One main result is that the classes of Boson and Fermion processes remain closed under thinning. We use the results on thinning to identify a subclass of point processes with a signed Levy pseudo measure as doubly stochastic Poisson processes. We also pose the following question: Assume you observe a realization of a thinned point process. What is the distribution of deleted points? Surprisingly, the Papangelou kernel of the thinning, besides a constant factor, is given by the intensity measure of this conditional probability, called splitting kernel.}, language = {en} }