@phdthesis{AgaBarfknecht2021, author = {Aga-Barfknecht, Heja}, title = {Investigation of the phenotype and genetic variant(s) of the diabetes locus Nidd/DBA}, school = {Universit{\"a}t Potsdam}, year = {2021}, abstract = {Diabetes is a major public health problem with increasing global prevalence. Type 2 diabetes (T2D), which accounts for 90\% of all diagnosed cases, is a complex polygenic disease also modulated by epigenetics and lifestyle factors. For the identification of T2D-associated genes, linkage analyses combined with mouse breeding strategies and bioinformatic tools were useful in the past. In a previous study in which a backcross population of the lean and diabetes-prone dilute brown non-agouti (DBA) mouse and the obese and diabetes-susceptible New Zealand obese (NZO) mouse was characterized, a major diabetes quantitative trait locus (QTL) was identified on chromosome 4. The locus was designated non-insulin dependent diabetes from DBA (Nidd/DBA). The aim of this thesis was (i) to perform a detailed phenotypic characterization of the Nidd/DBA mice, (ii) to further narrow the critical region and (iii) to identify the responsible genetic variant(s) of the Nidd/DBA locus. The phenotypic characterization of recombinant congenic mice carrying a 13.6 Mbp Nidd/DBA fragment with 284 genes presented a gradually worsening metabolic phenotype. Nidd/DBA allele carriers exhibited severe hyperglycemia (~19.9 mM) and impaired glucose clearance at 12 weeks of age. Ex vivo perifusion experiments with islets of 13-week-old congenic mice revealed a tendency towards reduced insulin secretion in homozygous DBA mice. In addition, 16-week-old mice showed a severe loss of β-cells and reduced pancreatic insulin content. Pathway analysis of transcriptome data from islets of congenic mice pointed towards a downregulation of cell survival genes. Morphological analysis of pancreatic sections displayed a reduced number of bi-hormonal cells co-expressing glucagon and insulin in homozygous DBA mice, which could indicate a reduced plasticity of endocrine cells in response to hyperglycemic stress. Further generation and phenotyping of recombinant congenic mice enabled the isolation of a 3.3 Mbp fragment that was still able to induce hyperglycemia and contained 61 genes. Bioinformatic analyses including haplotype mapping, sequence and transcriptome analysis were integrated in order to further reduce the number of candidate genes and to identify the presumable causative gene variant. Four putative candidate genes (Ttc39a, Kti12, Osbpl9, Calr4) were defined, which were either differentially expressed or carried a sequence variant. In addition, in silico ChIP-Seq analyses of the 3.3 Mbp region indicated a high number of SNPs located in active regions of binding sites of β-cell transcription factors. This points towards potentially altered cis-regulatory elements that could be responsible for the phenotype conferred by the Nidd/DBA locus. In summary, the Nidd/DBA locus mediates impaired glucose homeostasis and reduced insulin secretion capacity which finally leads to β-cell death. The downregulation of cell survival genes and reduced plasticity of endocrine cells could further contribute to the β-cell loss. The critical region was narrowed down to a 3.3 Mbp fragment containing 61 genes, of which four might be involved in the development of the diabetogenic Nidd/DBA phenotype.}, language = {en} }