@article{MishraPrasadMarwanetal.2017, author = {Mishra, Praveen Kumar and Prasad, Sushma and Marwan, Norbert and Anoop, A. and Krishnan, R. and Gaye, Birgit and Basavaiah, N. and Stebich, Martina and Menzel, Philip and Riedel, Nils}, title = {Contrasting pattern of hydrological changes during the past two millennia from central and northern India}, series = {Global and planetary change}, volume = {161}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2017.12.005}, pages = {97 -- 107}, year = {2017}, abstract = {High resolution reconstructions of the India Summer Monsoon (ISM) are essential to identify regionally different patterns of climate change and refine predictive models. We find opposing trends of hydrological proxies between northern (Sahiya cave stalagmite) and central India (Lonar Lake) between 100 and 1300 CE with the strongest anti-correlation between 810 and 1300 CE. The apparently contradictory data raise the question if these are related to widely different regional precipitation patterns or reflect human influence in/around the Lonar Lake. By comparing multiproxy data with historical records, we demonstrate that only the organic proxies in the Lonar Lake show evidence of anthropogenic impact. However, evaporite data (mineralogy and delta O-18) are indicative of precipitation/evaporation (P/E) into the Lonar Lake. Back-trajectories of air-mass circulation over northern and central India show that the relative contribution of the Bay of Bengal (BoB) branch of the ISM is crucial for determining the delta O-18 of carbonate proxies only in north India, whereas central India is affected significantly by the Arabian Sea (AS) branch of the ISM. We conclude that the delta O-18 of evaporative carbonates in the Lonar Lake reflects P/E and, in the interval under consideration, is not influenced by source water changes. The opposing trend between central and northern India can be explained by (i) persistent multidecadal droughts over central India between 810 and 1300 CE that provided an effective mechanism for strengthening sub-tropical westerly winds resulting in enhancement of wintertime (non-monsoonal) rainfall over northern parts of the Indian subcontinent, and/or (ii) increased moisture influx to northern India from the depleted BoB source waters.}, language = {en} } @phdthesis{Wolff2011, author = {Wolff, Christian Michael}, title = {East African monsoon variability since the last glacial}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-58079}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The impact of global warming on human water resources is attracting increasing attention. No other region in this world is so strongly affected by changes in water supply than the tropics. Especially in Africa, the availability and access to water is more crucial to existence (basic livelihoods and economic growth) than anywhere else on Earth. In East Africa, rainfall is mainly influenced by the migration of the Inter-Tropical Convergence Zone (ITCZ) and by the El Ni{\~n}o Southern Oscillation (ENSO) with more rain and floods during El Ni{\~n}o and severe droughts during La Ni{\~n}a. The forecasting of East African rainfall in a warming world requires a better understanding of the response of ENSO-driven variability to mean climate. Unfortunately, existing meteorological data sets are too short or incomplete to establish a precise evaluation of future climate. From Lake Challa near Mount Kilimanjaro, we report records from a laminated lake sediment core spanning the last 25,000 years. Analyzing a monthly cleared sediment trap confirms the annual origin of the laminations and demonstrates that the varve-thicknesses are strongly linked to the duration and strength of the windy season. Given the modern control of seasonal ITCZ location on wind and rain in this region and the inverse relation between the two, thicker varves represent windier and thus drier years. El Ni{\~n}o (La Ni{\~n}a) events are associated with wetter (drier) conditions in east Africa and decreased (increased) surface wind speeds. Based on this fact, the thickness of the varves can be used as a tool to reconstruct a) annual rainfall b) wind season strength, and c) ENSO variability. Within this thesis, I found evidence for centennialscale changes in ENSO-related rainfall variability during the last three millennia, abrupt changes in variability during the Medieval Climate Anomaly and the Little Ice Age, and an overall reduction in East African rainfall and its variability during the Last Glacial period. Climate model simulations support forward extrapolation from these lake-sediment data, indicating that a future Indian Ocean warming will enhance East Africa's hydrological cycle and its interannual variability in rainfall. Furthermore, I compared geochemical analyses from the sediment trap samples with a broad range of limnological, meteorological, and geological parameters to characterize the impact of sedimentation processes from the in-situ rocks to the deposited sediments. As a result an excellent calibration for existing μXRF data from Lake Challa over the entire 25,000 year long profile was provided. The climate development during the last 25,000 years as reconstructed from the Lake Challa sediments is in good agreement with other studies and highlights the complex interactions between long-term orbital forcing, atmosphere, ocean and land surface conditions. My findings help to understand how abrupt climate changes occur and how these changes correlate with climate changes elsewhere on Earth.}, language = {en} } @article{RomeroVianaKienelSachse2012, author = {Romero-Viana, Lidia and Kienel, Ulrike and Sachse, Dirk}, title = {Lipid biomarker signatures in a hypersaline lake on Isabel Island (Eastern Pacific) as a proxy for past rainfall anomaly (1942-2006 AD)}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {350}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, number = {18}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2012.06.011}, pages = {49 -- 61}, year = {2012}, abstract = {Isabel Lake is a hypersaline crater-lake on Isabel Island, Mexico, situated in the eastern tropical Pacific, an area highly sensitive to hydrological changes. Today, annual rainfall mostly occurs during the wet season, from June to October, when the northern edge of the Intertropical Convergence Zone (ITCZ) extends over the island. In order to evaluate the potential of sedimentary lipid biomarker signatures as a proxy of past hydro-climatic variability we have performed a calibration analysis comparing changes in biomarker distribution in the upper 16 cm of the sediment core with a regional instrumental data set. Annual laminations present in the sediment sequence allow for precise chronological control (1942-2006), More than 80 different lipid compounds were identified in the sediment and could be assigned to three major groups of source organisms: (1) algal populations; (2) a mixed community of ciliates, bacteria and cyanobacteria; and (3) photosynthetic sulfur bacteria. We found that the observed changes in the. relative contribution of the different lipid biomarkers to the sediment record were determined by the regional rainfall variability over the last 65 years. The planktonic community of Isabel Lake was highly sensitive to salinity fluctuations related to rainfall variability; seasonal precipitation results in freshwater input into the lake, driving an annual algal bloom and a relative decrease in the abundance of the more halotolerant populations of (cyano) bacteria and ciliates. Consequently, the concentration ratio between the two most abundant biomarkers in the Isabel Lake sediments, n-alkyl diols and tetrahymanol (which we define as the DiTe index), representing algal and ciliate planktonic populations, respectively, was significantly correlated with the seasonal rainfall anomaly (r = 0.68, p < 0.01). We propose that the DiTe index is a proxy of changes in the aquatic ecosystem of Isabel Lake and, by extension, regional hydrological changes in a sensitive climatic area of the eastern tropical Pacific.}, language = {en} } @article{PrasadAnoopRiedeletal.2014, author = {Prasad, Sushma and Anoop, A. and Riedel, N. and Sarkar, Saswati and Menzel, P. and Basavaiah, Nathani and Krishnan, R. and Fuller, D. and Plessen, Birgit and Gaye, B. and Roehl, U. and Wilkes, H. and Sachse, Dirk and Sawant, R. and Wiesner, M. G. and Stebich, M.}, title = {Prolonged monsoon droughts and links to Indo-Pacific warm pool: A Holocene record from Lonar Lake, central India}, series = {Earth \& planetary science letters}, volume = {391}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2014.01.043}, pages = {171 -- 182}, year = {2014}, abstract = {Concerns about the regional impact of global climate change in a warming scenario have highlighted the gaps in our understanding of the Indian Summer Monsoon (ISM, also referred to as the Indian Ocean summer monsoon) and the absence of long term palaeoclimate data from the central Indian core monsoon zone (CMZ). Here we present the first high resolution, well-dated, multiproxy reconstruction of Holocene palaeoclimate from a 10 m long sediment core raised from the Lonar Lake in central India. We show that while the early Holocene onset of-intensified monsoon in the CMZ is similar to that reported from other ISM records, the Lonar data shows two prolonged droughts (PD, multidecadal to centennial periods of weaker monsoon) between 4.6-3.9 and 2-0.6 cal ka. A comparison of our record with available data from other ISM influenced sites shows that the impact of these PD was observed in varying degrees throughout the ISM realm and coincides with intervals of higher solar irradiance. We demonstrate that (i) the regional warming in the Indo-Pacific Warm Pool (IPWP) plays an important role in causing ISM PD through changes in meridional overturning circulation and position of the anomalous Walker cell; (ii) the long term influence of conditions like El Nino-Southern Oscillation (ENSO) on the ISM began only ca. 2 cal ka BP and is coincident with the warming of the southern IPWP; (iii) the first settlements in central India coincided with the onset of the first PD and agricultural populations flourished between the two PD, highlighting the significance of natural climate variability and PD as major environmental factors affecting human settlements.}, language = {en} }