@phdthesis{Boeniger2010, author = {B{\"o}niger, Urs}, title = {Attributes and their potential to analyze and interpret 3D GPR data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50124}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Based on technological advances made within the past decades, ground-penetrating radar (GPR) has become a well-established, non-destructive subsurface imaging technique. Catalyzed by recent demands for high-resolution, near-surface imaging (e.g., the detection of unexploded ordnances and subsurface utilities, or hydrological investigations), the quality of today's GPR-based, near-surface images has significantly matured. At the same time, the analysis of oil and gas related reflection seismic data sets has experienced significant advances. Considering the sensitivity of attribute analysis with respect to data positioning in general, and multi-trace attributes in particular, trace positioning accuracy is of major importance for the success of attribute-based analysis flows. Therefore, to study the feasibility of GPR-based attribute analyses, I first developed and evaluated a real-time GPR surveying setup based on a modern tracking total station (TTS). The combination of current GPR systems capability of fusing global positioning system (GPS) and geophysical data in real-time, the ability of modern TTS systems to generate a GPS-like positional output and wireless data transmission using radio modems results in a flexible and robust surveying setup. To elaborate the feasibility of this setup, I studied the major limitations of such an approach: system cross-talk and data delays known as latencies. Experimental studies have shown that when a minimal distance of ~5 m between the GPR and the TTS system is considered, the signal-to-noise ratio of the acquired GPR data using radio communication equals the one without radio communication. To address the limitations imposed by system latencies, inherent to all real-time data fusion approaches, I developed a novel correction (calibration) strategy to assess the gross system latency and to correct for it. This resulted in the centimeter trace accuracy required by high-frequency and/or three-dimensional (3D) GPR surveys. Having introduced this flexible high-precision surveying setup, I successfully demonstrated the application of attribute-based processing to GPR specific problems, which may differ significantly from the geological ones typically addressed by the oil and gas industry using seismic data. In this thesis, I concentrated on archaeological and subsurface utility problems, as they represent typical near-surface geophysical targets. Enhancing 3D archaeological GPR data sets using a dip-steered filtering approach, followed by calculation of coherency and similarity, allowed me to conduct subsurface interpretations far beyond those obtained by classical time-slice analyses. I could show that the incorporation of additional data sets (magnetic and topographic) and attributes derived from these data sets can further improve the interpretation. In a case study, such an approach revealed the complementary nature of the individual data sets and, for example, allowed conclusions about the source location of magnetic anomalies by concurrently analyzing GPR time/depth slices to be made. In addition to archaeological targets, subsurface utility detection and characterization is a steadily growing field of application for GPR. I developed a novel attribute called depolarization. Incorporation of geometrical and physical feature characteristics into the depolarization attribute allowed me to display the observed polarization phenomena efficiently. Geometrical enhancement makes use of an improved symmetry extraction algorithm based on Laplacian high-boosting, followed by a phase-based symmetry calculation using a two-dimensional (2D) log-Gabor filterbank decomposition of the data volume. To extract the physical information from the dual-component data set, I employed a sliding-window principle component analysis. The combination of the geometrically derived feature angle and the physically derived polarization angle allowed me to enhance the polarization characteristics of subsurface features. Ground-truth information obtained by excavations confirmed this interpretation. In the future, inclusion of cross-polarized antennae configurations into the processing scheme may further improve the quality of the depolarization attribute. In addition to polarization phenomena, the time-dependent frequency evolution of GPR signals might hold further information on the subsurface architecture and/or material properties. High-resolution, sparsity promoting decomposition approaches have recently had a significant impact on the image and signal processing community. In this thesis, I introduced a modified tree-based matching pursuit approach. Based on different synthetic examples, I showed that the modified tree-based pursuit approach clearly outperforms other commonly used time-frequency decomposition approaches with respect to both time and frequency resolutions. Apart from the investigation of tuning effects in GPR data, I also demonstrated the potential of high-resolution sparse decompositions for advanced data processing. Frequency modulation of individual atoms themselves allows to efficiently correct frequency attenuation effects and improve resolution based on shifting the average frequency level. GPR-based attribute analysis is still in its infancy. Considering the growing widespread realization of 3D GPR studies there will certainly be an increasing demand towards improved subsurface interpretations in the future. Similar to the assessment of quantitative reservoir properties through the combination of 3D seismic attribute volumes with sparse well-log information, parameter estimation in a combined manner represents another step in emphasizing the potential of attribute-driven GPR data analyses.}, language = {en} } @article{TronickePaascheBoeniger2012, author = {Tronicke, Jens and Paasche, Hendrik and B{\"o}niger, Urs}, title = {Crosshole traveltime tomography using particle swarm optimization a near-surface field example}, series = {Geophysics}, volume = {77}, journal = {Geophysics}, number = {1}, publisher = {Society of Exploration Geophysicists}, address = {Tulsa}, issn = {0016-8033}, doi = {10.1190/GEO2010-0411.1}, pages = {R19 -- R32}, year = {2012}, abstract = {Particle swarm optimization (PSO) is a relatively new global optimization approach inspired by the social behavior of bird flocking and fish schooling. Although this approach has proven to provide excellent convergence rates in different optimization problems, it has seldom been applied to inverse geophysical problems. Until today, published geophysical applications mainly focus on finding an optimum solution for simple, 1D inverse problems. We have applied PSO-based optimization strategies to reconstruct 2D P-wave velocity fields from crosshole traveltime data sets. Our inversion strategy also includes generating and analyzing a representative ensemble of acceptable models, which allows us to appraise uncertainty and nonuniqueness issues. The potential of our strategy was tested on field data collected at a well-constrained test site in Horstwalde, Germany. At this field site, the shallow subsurface mainly consists of sand- and gravel-dominated glaciofluvial sediments, which, as known from several boreholes and other geophysical experiments, exhibit some well-defined layering at the scale of our crosshole seismic data. Thus, we have implemented a flexible, layer-based model parameterization, which, compared with standard cell-based parameterizations, allows for significantly reducing the number of unknown model parameters and for efficiently implementing a priori model constraints. Comparing the 2D velocity fields resulting from our PSO strategy to independent borehole and direct-push data illustrated the benefits of choosing an efficient global optimization approach. These include a straightforward and understandable appraisal of nonuniqueness issues as well as the possibility of an improved and also more objective interpretation.}, language = {en} } @article{RumpfBoenigerTronicke2012, author = {Rumpf, M. and B{\"o}niger, Urs and Tronicke, Jens}, title = {Refraction seismics to investigate a creeping hillslope in the Austrian Alps}, series = {ENGINEERING GEOLOGY}, volume = {151}, journal = {ENGINEERING GEOLOGY}, number = {24}, publisher = {ELSEVIER SCIENCE BV}, address = {AMSTERDAM}, issn = {0013-7952}, doi = {10.1016/j.enggeo.2012.09.008}, pages = {37 -- 46}, year = {2012}, abstract = {Assessing the human and economic threat introduced by sliding or creeping masses is of major importance in landslide hazard assessment and mitigation. Especially, in the densely populated alpine region unstable hillslopes represent a major hazard to men and infrastructure. Detailed knowledge, especially, of the dominant site-specific controlling factors such as subsurface architecture and geology is thereby key in assessing slope vulnerability. In order to quantify the geological variations at a creeping hillslope in the Austrian Alps, we have collected six 2D refraction seismic profiles. We propose using a layer-based inversion strategy to reconstruct P-wave velocity models from first arrival times. Considering the geological complexity at such sites, the selected inversion approach eases the interpretability of geological structures given intrinsic optimization for only a discrete, user-defined, number of layers. As the applied layer-based inversion approach fits our travel time data equally well as traditional smooth inversion approaches, it represents a feasible mean to summarize the structural complexity often present at such sites. Analysis of the inversion results illustrates that bedrock topography clearly deviates from a previously assumed planar surface and exhibits distinct variations across the slope extension. Bedrock topography additionally impacts the intermediate geological units and, thus, this information is critical for further analyses such as geomechanical modeling. (C) 2012 Elsevier B.V. All rights reserved.}, language = {en} } @article{BoenigerTronicke2012, author = {B{\"o}niger, Urs and Tronicke, Jens}, title = {Subsurface utility extraction and characterization combining GPR symmetry and polarization attributes}, series = {IEEE transactions on geoscience and remote sensing}, volume = {50}, journal = {IEEE transactions on geoscience and remote sensing}, number = {3}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {0196-2892}, doi = {10.1109/TGRS.2011.2163413}, pages = {736 -- 746}, year = {2012}, abstract = {Polarization of the electromagnetic wavefield has significant implications for the acquisition and interpretation of ground-penetrating radar (GPR) data. Based on the geometrical and physical properties of the subsurface scatterer and the physical properties of its surrounding material, strong polarization phenomena might occur. Here, we develop an attribute-based analysis approach to extract and characterize buried utility pipes using two broadside antenna configurations. First, we enhance and extract the utilities by making use of their distinct symmetric nature through the application of a symmetry-enhancing image-processing algorithm known as phase symmetry. Second, we assess the polarization characteristics by calculating two attributes (polarization angle and linearity) using principal component analysis. Combination of attributes derived from these steps into a novel depolarization attribute allows one to efficiently detect and distinguish different utilities present within 3-D GPR data. The performance of our analysis approach is illustrated using synthetic examples and evaluated using field examples (including a dual-configuration 3-D data set) collected across a field site, where detailed ground-truth information is available. Our results demonstrate that the proposed approach allows for a more detailed extraction and combination of utility relevant information compared to approaches relying on single-component data and, thus, eases the interpretation of multicomponent GPR data sets.}, language = {en} } @article{AllroggenTronickeDelocketal.2015, author = {Allroggen, Niklas and Tronicke, Jens and Delock, Marcel and B{\"o}niger, Urs}, title = {Topographic migration of 2D and 3D ground-penetrating radar data considering variable velocities}, series = {Near surface geophysics}, volume = {13}, journal = {Near surface geophysics}, number = {3}, publisher = {European Association of Geoscientists \& Engineers}, address = {Houten}, issn = {1569-4445}, doi = {10.3997/1873-0604.2014037}, pages = {4}, year = {2015}, abstract = {We present a 2D/3D topographic migration scheme for ground-penetrating radar (GPR) data which is able to account for variable velocities by using the root mean square (rms) velocity approximation. We test our migration scheme using a synthetic 2D example and compare our migrated image to the results obtained using common GPR migration approaches. Furthermore, we apply it to 2D and 3D field data. These examples are recorded across common subsurface settings including surface topography and variations in the GPR subsurface velocity field caused by a shallow ground water table. In such field settings, our migration strategy provides well focused images of commonoffset GPR data without the need for a detailed interval velocity model. The synthetic and field examples demonstrate that our topographic migration scheme allows for accurate GPR imaging in the presence of variations in surface topography and subsurface velocity.}, language = {en} }