@article{ZollDiehlSiebert2019, author = {Zoll, Felix and Diehl, Katharina and Siebert, Rosemarie}, title = {Integrating sustainability goals in innovation processes}, series = {Sustainability}, volume = {11}, journal = {Sustainability}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su11143761}, pages = {15}, year = {2019}, abstract = {The innovative dual-purpose chicken approach aims at contributing to the transition towards sustainable poultry production by avoiding the culling of male chickens. To successfully integrate sustainability aspects into innovation, goal congruency among actors and clearly communicating the added value within the actor network and to consumers is needed. The challenge of identifying common sustainability goals calls for decision support tools. The objectives of our research were to investigate whether the tool could assist in improving communication and marketing with respect to sustainability and optimizing the value chain organization. Three actor groups participated in the tool application, in which quantitative and qualitative data were collected. The results showed that there were manifold sustainability goals within the innovation network, but only some goals overlapped, and the perception of their implementation also diverged. While easily marketable goals such as 'animal welfare' were perceived as being largely implemented, economic goals were prioritized less often, and the implementation was perceived as being rather low. By visualizing congruencies and differences in the goals, the tool helped identify fields of action, such as improved information flows and prompted thinking processes. We conclude that the tool is useful for managing complex decision processes with several actors involved.}, language = {en} } @misc{ZollDiehlSiebert2019, author = {Zoll, Felix and Diehl, Katharina and Siebert, Rosemarie}, title = {Integrating sustainability goals in innovation processes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1036}, issn = {1866-8372}, doi = {10.25932/publishup-47342}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473420}, pages = {17}, year = {2019}, abstract = {The innovative dual-purpose chicken approach aims at contributing to the transition towards sustainable poultry production by avoiding the culling of male chickens. To successfully integrate sustainability aspects into innovation, goal congruency among actors and clearly communicating the added value within the actor network and to consumers is needed. The challenge of identifying common sustainability goals calls for decision support tools. The objectives of our research were to investigate whether the tool could assist in improving communication and marketing with respect to sustainability and optimizing the value chain organization. Three actor groups participated in the tool application, in which quantitative and qualitative data were collected. The results showed that there were manifold sustainability goals within the innovation network, but only some goals overlapped, and the perception of their implementation also diverged. While easily marketable goals such as 'animal welfare' were perceived as being largely implemented, economic goals were prioritized less often, and the implementation was perceived as being rather low. By visualizing congruencies and differences in the goals, the tool helped identify fields of action, such as improved information flows and prompted thinking processes. We conclude that the tool is useful for managing complex decision processes with several actors involved.}, language = {en} } @article{ZechAttingerBellinetal.2019, author = {Zech, Alraune and Attinger, Sabine and Bellin, Alberto and Cvetkovic, Vladimir and Dietrich, Peter and Fiori, Aldo and Teutsch, Georg and Dagan, Gedeon}, title = {A Critical Analysis of Transverse Dispersivity Field Data}, series = {Groundwater : journal of the Association of Ground-Water Scientists and Engineers, a division of the National Ground Water Association}, volume = {57}, journal = {Groundwater : journal of the Association of Ground-Water Scientists and Engineers, a division of the National Ground Water Association}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0017-467X}, doi = {10.1111/gwat.12838}, pages = {632 -- 639}, year = {2019}, abstract = {Transverse dispersion, or tracer spreading orthogonal to the mean flow direction, which is relevant e.g, for quantifying bio-degradation of contaminant plumes or mixing of reactive solutes, has been studied in the literature less than the longitudinal one. Inferring transverse dispersion coefficients from field experiments is a difficult and error-prone task, requiring a spatial resolution of solute plumes which is not easily achievable in applications. In absence of field data, it is a questionable common practice to set transverse dispersivities as a fraction of the longitudinal one, with the ratio 1/10 being the most prevalent. We collected estimates of field-scale transverse dispersivities from existing publications and explored possible scale relationships as guidance criteria for applications. Our investigation showed that a large number of estimates available in the literature are of low reliability and should be discarded from further analysis. The remaining reliable estimates are formation-specific, span three orders of magnitude and do not show any clear scale-dependence on the plume traveled distance. The ratios with the longitudinal dispersivity are also site specific and vary widely. The reliability of transverse dispersivities depends significantly on the type of field experiment and method of data analysis. In applications where transverse dispersion plays a significant role, inference of transverse dispersivities should be part of site characterization with the transverse dispersivity estimated as an independent parameter rather than related heuristically to longitudinal dispersivity.}, language = {en} } @article{YuanBraunGueritetal.2019, author = {Yuan, Xiaoping P. and Braun, Jean and Guerit, Laure and Rouby, D. and Cordonnier, G.}, title = {A New Efficient Method to Solve the Stream Power Law Model Taking Into Account Sediment Deposition}, series = {Journal of geophysical research : Earth surface}, volume = {124}, journal = {Journal of geophysical research : Earth surface}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2018JF004867}, pages = {1346 -- 1365}, year = {2019}, abstract = {The stream power law model has been widely used to represent erosion by rivers but does not take into account the role played by sediment in modulating erosion and deposition rates. Davy and Lague (2009, ) provide an approach to address this issue, but it is computationally demanding because the local balance between erosion and deposition depends on sediment flux resulting from net upstream erosion. Here, we propose an efficient (i.e., O(N) and implicit) method to solve their equation. This means that, unlike other methods used to study the complete dynamics of fluvial systems (e.g., including the transition from detachment-limited to transport-limited behavior), our method is unconditionally stable even when large time steps are used. We demonstrate its applicability by performing a range of simulations based on a simple setup composed of an uplifting region adjacent to a stable foreland basin. As uplift and erosion progress, the mean elevations of the uplifting relief and the foreland increase, together with the average slope in the foreland. Sediments aggrade in the foreland and prograde to reach the base level where sediments are allowed to leave the system. We show how the topography of the uplifting relief and the stratigraphy of the foreland basin are controlled by the efficiency of river erosion and the efficiency of sediment transport by rivers. We observe the formation of a steady-state geometry in the uplifting region, and a dynamic steady state (i.e., autocyclic aggradation and incision) in the foreland, with aggradation and incision thicknesses up to tens of meters.}, language = {en} } @article{WendiMerzMarwan2019, author = {Wendi, Dadiyorto and Merz, Bruno and Marwan, Norbert}, title = {Assessing hydrograph similarity and rare runoff dynamics by cross recurrence plots}, series = {Water resources research}, volume = {55}, journal = {Water resources research}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2018WR024111}, pages = {4704 -- 4726}, year = {2019}, abstract = {This paper introduces a novel measure to assess similarity between event hydrographs. It is based on cross recurrence plots (CRP) and recurrence quantification analysis (RQA), which have recently gained attention in a range of disciplines when dealing with complex systems. The method attempts to quantify the event runoff dynamics and is based on the time delay embedded phase space representation of discharge hydrographs. A phase space trajectory is reconstructed from the event hydrograph, and pairs of hydrographs are compared to each other based on the distance of their phase space trajectories. Time delay embedding allows considering the multidimensional relationships between different points in time within the event. Hence, the temporal succession of discharge values is taken into account, such as the impact of the initial conditions on the runoff event. We provide an introduction to cross recurrence plots and discuss their parameterization. An application example based on flood time series demonstrates how the method can be used to measure the similarity or dissimilarity of events, and how it can be used to detect events with rare runoff dynamics. It is argued that this methods provides a more comprehensive approach to quantify hydrograph similarity compared to conventional hydrological signatures.}, language = {en} } @article{WeldeabRuehlemannBookhagenetal.2019, author = {Weldeab, Syee and R{\"u}hlemann, Carsten and Bookhagen, Bodo and Pausata, Francesco S. R. and Perez-Lua, Fabiola M.}, title = {Enhanced Himalayan glacial melting during YD and H1 recorded in the Northern Bay of Bengal}, series = {Geochemistry, geophysics, geosystems}, volume = {20}, journal = {Geochemistry, geophysics, geosystems}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2018GC008065}, pages = {2449 -- 2461}, year = {2019}, abstract = {Ocean-land thermal feedback mechanisms in the Indian Summer Monsoon (ISM) domain are an important but not well understood component of regional climate dynamics. Here we present a O-18 record analyzed in the mixed-layer dwelling planktonic foraminifer Globigerinoides ruber (sensu stricto) from the northernmost Bay of Bengal (BoB). The O-18 time series provides a spatially integrated measure of monsoonal precipitation and Himalayan meltwater runoff into the northern BoB and reveals two brief episodes of anomalously low O-18 values between 16.30.4 and 160.5 and 12.60.4 and 12.30.4 thousand years before present. The timing of these events is centered at Heinrich event 1 and the Younger Dryas, well-known phases of weak northern hemisphere monsoon systems. Numerical climate model experiments, simulating Heinrich event-like conditions, suggest a surface warming over the monsoon-dominated Himalaya and foreland in response to ISM weakening. Corroborating the simulation results, our analysis of published moraine exposure ages in the monsoon-dominated Himalaya indicates enhanced glacier retreats that, considering age model uncertainties, coincide and overlap with the episodes of anomalously low O-18 values in the northernmost BoB. Our climate proxy and simulation results provide insights into past regional climate dynamics, suggesting reduced cloud cover, increased solar radiation, and air warming of the Himalaya and foreland areas and, as a result, glacier mass losses in response to weakened ISM. Plain Language Summary Indian Summer Monsoon rainfall and Himalayan glacier/snow melts constitute the main water source for the densely populated Indian subcontinent. Better understanding of how future climate changes will affect the monsoon rainfall and Himalayan glaciers requires a long climate record. In this study, we create a 13,000-year-long climate record that allows us to better understand the response of Indian Summer Monsoon rainfall and Himalayan glaciers to past climate changes. The focus of our study is the time window between 9,000 and 22,000 years ago, an episode where the global climate experienced large and rapid changes. Our sediment record from the northern Bay of Bengal and climate change simulation indicate that during episodes of weak monsoon, the melting of the Himalayan glaciers increases substantially significantly. This is because the weakening of the monsoon results in less cloud cover and, as a result, the surface receives more sunlight and causes glacier melting.}, language = {en} } @article{WangOswaldGraeffetal.2019, author = {Wang, Wei-shi and Oswald, Sascha and Gr{\"a}ff, Thomas and Lensing, Hermann Josef and Liu, Tie and Strasser, Daniel and Munz, Matthias}, title = {Impact of river reconstruction on groundwater flow during bank filtration assessed by transient three-dimensional modelling of flow and heat transport}, series = {Hydrogeology journal : official journal of the International Association of Hydrogeologists}, volume = {28}, journal = {Hydrogeology journal : official journal of the International Association of Hydrogeologists}, number = {2}, publisher = {Springer}, address = {Berlin ; Heidelberg [u.a.]}, issn = {1431-2174}, doi = {10.1007/s10040-019-02063-3}, pages = {723 -- 743}, year = {2019}, abstract = {Bank filtration (BF) is an established indirect water-treatment technology. The quality of water gained via BF depends on the subsurface capture zone, the mixing ratio (river water versus ambient groundwater), spatial and temporal distribution of subsurface travel times, and subsurface temperature patterns. Surface-water infiltration into the adjacent aquifer is determined by the local hydraulic gradient and riverbed permeability, which could be altered by natural clogging, scouring and artificial decolmation processes. The seasonal behaviour of a BF system in Germany, and its development during and about 6 months after decolmation (canal reconstruction), was observed with a long-term monitoring programme. To quantify the spatial and temporal variation in the BF system, a transient flow and heat transport model was implemented and two model scenarios, 'with' and 'without' canal reconstruction, were generated. Overall, the simulated water heads and temperatures matched those observed. Increased hydraulic connection between the canal and aquifer caused by the canal reconstruction led to an increase of similar to 23\% in the already high share of BF water abstracted by the nearby waterworks. Subsurface travel-time distribution substantially shifted towards shorter travel times. Flow paths with travel times <200 days increased by similar to 10\% and those with <300 days by 15\%. Generally, the periodic temperature signal, and the summer and winter temperature extrema, increased and penetrated deeper into the aquifer. The joint hydrological and thermal effects caused by the canal reconstruction might increase the potential of biodegradable compounds to further penetrate into the aquifer, also by potentially affecting the redox zonation in the aquifer.}, language = {en} } @article{vonSpechtOeztuerkVehetal.2019, author = {von Specht, Sebastian and {\"O}zt{\"u}rk, Ugur and Veh, Georg and Cotton, Fabrice and Korup, Oliver}, title = {Effects of finite source rupture on landslide triggering}, series = {Solid earth}, volume = {10}, journal = {Solid earth}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1869-9510}, doi = {10.5194/se-10-463-2019}, pages = {463 -- 486}, year = {2019}, abstract = {The propagation of a seismic rupture on a fault introduces spatial variations in the seismic wave field surrounding the fault. This directivity effect results in larger shaking amplitudes in the rupture propagation direction. Its seismic radiation pattern also causes amplitude variations between the strike-normal and strike-parallel components of horizontal ground motion. We investigated the landslide response to these effects during the 2016 Kumamoto earthquake (M-w 7.1) in central Kyushu (Japan). Although the distribution of some 1500 earthquake-triggered landslides as a function of rupture distance is consistent with the observed Arias intensity, the landslides were more concentrated to the northeast of the southwest-northeast striking rupture. We examined several landslide susceptibility factors: hillslope inclination, the median amplification factor (MAF) of ground shaking, lithology, land cover, and topographic wetness. None of these factors sufficiently explains the landslide distribution or orientation (aspect), although the landslide head scarps have an elevated hillslope inclination and MAF. We propose a new physics-based ground-motion model (GMM) that accounts for the seismic rupture effects, and we demonstrate that the low-frequency seismic radiation pattern is consistent with the overall landslide distribution. Its spatial pattern is influenced by the rupture directivity effect, whereas landslide aspect is influenced by amplitude variations between the fault-normal and fault-parallel motion at frequencies < 2 Hz. This azimuth dependence implies that comparable landslide concentrations can occur at different distances from the rupture. This quantitative link between the prevalent landslide aspect and the low-frequency seismic radiation pattern can improve coseismic landslide hazard assessment.}, language = {en} } @article{VehKorupWalz2019, author = {Veh, Georg and Korup, Oliver and Walz, Ariane}, title = {Hazard from Himalayan glacier lake outburst floods}, series = {Proceedings of the National Academy of Sciences of the United States of America : PNAS}, volume = {117}, journal = {Proceedings of the National Academy of Sciences of the United States of America : PNAS}, number = {2}, publisher = {National Academy of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1914898117}, pages = {907 -- 912}, year = {2019}, abstract = {Sustained glacier melt in the Himalayas has gradually spawned more than 5,000 glacier lakes that are dammed by potentially unstable moraines. When such dams break, glacier lake outburst floods (GLOFs) can cause catastrophic societal and geomorphic impacts. We present a robust probabilistic estimate of average GLOFs return periods in the Himalayan region, drawing on 5.4 billion simulations. We find that the 100-y outburst flood has an average volume of 33.5(+3.7)/(-3.7) x 10(6) m(3) (posterior mean and 95\% highest density interval [HDI]) with a peak discharge of 15,600(+2.000)/(-1,800) m(3).S-1. Our estimated GLOF hazard is tied to the rate of historic lake outbursts and the number of present lakes, which both are highest in the Eastern Himalayas. There, the estimated 100-y GLOF discharge (similar to 14,500 m(3).s(-1)) is more than 3 times that of the adjacent Nyainqentanglha Mountains, and at least an order of magnitude higher than in the Hindu Kush, Karakoram, and Western Himalayas. The GLOF hazard may increase in these regions that currently have large glaciers, but few lakes, if future projected ice loss generates more unstable moraine-dammed lakes than we recognize today. Flood peaks from GLOFs mostly attenuate within Himalayan headwaters, but can rival monsoon-fed discharges in major rivers hundreds to thousands of kilometers downstream. Projections of future hazard from meteorological floods need to account for the extreme runoffs during lake outbursts, given the increasing trends in population, infrastructure, and hydropower projects in Himalayan headwaters.}, language = {en} } @phdthesis{Veh2019, author = {Veh, Georg}, title = {Outburst floods from moraine-dammed lakes in the Himalayas}, doi = {10.25932/publishup-43607}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436071}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2019}, abstract = {The Himalayas are a region that is most dependent, but also frequently prone to hazards from changing meltwater resources. This mountain belt hosts the highest mountain peaks on earth, has the largest reserve of ice outside the polar regions, and is home to a rapidly growing population in recent decades. One source of hazard has attracted scientific research in particular in the past two decades: glacial lake outburst floods (GLOFs) occurred rarely, but mostly with fatal and catastrophic consequences for downstream communities and infrastructure. Such GLOFs can suddenly release several million cubic meters of water from naturally impounded meltwater lakes. Glacial lakes have grown in number and size by ongoing glacial mass losses in the Himalayas. Theory holds that enhanced meltwater production may increase GLOF frequency, but has never been tested so far. The key challenge to test this notion are the high altitudes of >4000 m, at which lakes occur, making field work impractical. Moreover, flood waves can attenuate rapidly in mountain channels downstream, so that many GLOFs have likely gone unnoticed in past decades. Our knowledge on GLOFs is hence likely biased towards larger, destructive cases, which challenges a detailed quantification of their frequency and their response to atmospheric warming. Robustly quantifying the magnitude and frequency of GLOFs is essential for risk assessment and management along mountain rivers, not least to implement their return periods in building design codes. Motivated by this limited knowledge of GLOF frequency and hazard, I developed an algorithm that efficiently detects GLOFs from satellite images. In essence, this algorithm classifies land cover in 30 years (~1988-2017) of continuously recorded Landsat images over the Himalayas, and calculates likelihoods for rapidly shrinking water bodies in the stack of land cover images. I visually assessed such detected tell-tale sites for sediment fans in the river channel downstream, a second key diagnostic of GLOFs. Rigorous tests and validation with known cases from roughly 10\% of the Himalayas suggested that this algorithm is robust against frequent image noise, and hence capable to identify previously unknown GLOFs. Extending the search radius to the entire Himalayan mountain range revealed some 22 newly detected GLOFs. I thus more than doubled the existing GLOF count from 16 previously known cases since 1988, and found a dominant cluster of GLOFs in the Central and Eastern Himalayas (Bhutan and Eastern Nepal), compared to the rarer affected ranges in the North. Yet, the total of 38 GLOFs showed no change in the annual frequency, so that the activity of GLOFs per unit glacial lake area has decreased in the past 30 years. I discussed possible drivers for this finding, but left a further attribution to distinct GLOF-triggering mechanisms open to future research. This updated GLOF frequency was the key input for assessing GLOF hazard for the entire Himalayan mountain belt and several subregions. I used standard definitions in flood hydrology, describing hazard as the annual exceedance probability of a given flood peak discharge [m3 s-1] or larger at the breach location. I coupled the empirical frequency of GLOFs per region to simulations of physically plausible peak discharges from all existing ~5,000 lakes in the Himalayas. Using an extreme-value model, I could hence calculate flood return periods. I found that the contemporary 100-year GLOF discharge (the flood level that is reached or exceeded on average once in 100 years) is 20,600+2,200/-2,300 m3 s-1 for the entire Himalayas. Given the spatial and temporal distribution of historic GLOFs, contemporary GLOF hazard is highest in the Eastern Himalayas, and lower for regions with rarer GLOF abundance. I also calculated GLOF hazard for some 9,500 overdeepenings, which could expose and fill with water, if all Himalayan glaciers have melted eventually. Assuming that the current GLOF rate remains unchanged, the 100-year GLOF discharge could double (41,700+5,500/-4,700 m3 s-1), while the regional GLOF hazard may increase largest in the Karakoram. To conclude, these three stages-from GLOF detection, to analysing their frequency and estimating regional GLOF hazard-provide a framework for modern GLOF hazard assessment. Given the rapidly growing population, infrastructure, and hydropower projects in the Himalayas, this thesis assists in quantifying the purely climate-driven contribution to hazard and risk from GLOFs.}, language = {en} } @misc{TofeldeSaviWickertetal.2019, author = {Tofelde, Stefanie and Savi, Sara and Wickert, Andrew D. and Bufe, Aaron and Schildgen, Taylor F.}, title = {Alluvial channel response to environmental perturbations}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {762}, issn = {1866-8372}, doi = {10.25932/publishup-43718}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437185}, pages = {609 -- 631}, year = {2019}, abstract = {The sensitivity of fluvial systems to tectonic and climatic boundary conditions allows us to use the geomorphic and stratigraphic records as quantitative archives of past climatic and tectonic conditions. Thus, fluvial terraces that form on alluvial fans and floodplains as well as the rate of sediment export to oceanic and continental basins are commonly used to reconstruct paleoenvironments. However, we currently lack a systematic and quantitative understanding of the transient evolution of fluvial systems and their associated sediment storage and release in response to changes in base level, water input, and sediment input. Such knowledge is necessary to quantify past environmental change from terrace records or sedimentary deposits and to disentangle the multiple possible causes for terrace formation and sediment deposition. Here, we use a set of seven physical experiments to explore terrace formation and sediment export from a single, braided channel that is perturbed by changes in upstream water discharge or sediment supply, or through downstream base-level fall. Each perturbation differently affects (1) the geometry of terraces and channels, (2) the timing of terrace cutting, and (3) the transient response of sediment export from the basin. In general, an increase in water discharge leads to near-instantaneous channel incision across the entire fluvial system and consequent local terrace cutting, thus preserving the initial channel slope on terrace surfaces, and it also produces a transient increase in sediment export from the system. In contrast, a decreased upstream sediment-supply rate may result in longer lag times before terrace cutting, leading to terrace slopes that differ from the initial channel slope, and also lagged responses in sediment export. Finally, downstream base-level fall triggers the upstream propagation of a diffuse knickzone, forming terraces with upstream-decreasing ages. The slope of terraces triggered by base-level fall mimics that of the newly adjusted active channel, whereas slopes of terraces triggered by a decrease in upstream sediment discharge or an increase in upstream water discharge are steeper compared to the new equilibrium channel. By combining fillterrace records with constraints on sediment export, we can distinguish among environmental perturbations that would otherwise remain unresolved when using just one of these records.}, language = {en} } @article{TofeldeSaviWickertetal.2019, author = {Tofelde, Stefanie and Savi, Sara and Wickert, Andrew D. and Bufe, Aaron and Schildgen, Taylor F.}, title = {Alluvial channel response to environmental perturbations}, series = {Earth Surface Dynamics}, volume = {7}, journal = {Earth Surface Dynamics}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-7-609-2019}, pages = {609 -- 631}, year = {2019}, abstract = {The sensitivity of fluvial systems to tectonic and climatic boundary conditions allows us to use the geomorphic and stratigraphic records as quantitative archives of past climatic and tectonic conditions. Thus, fluvial terraces that form on alluvial fans and floodplains as well as the rate of sediment export to oceanic and continental basins are commonly used to reconstruct paleoenvironments. However, we currently lack a systematic and quantitative understanding of the transient evolution of fluvial systems and their associated sediment storage and release in response to changes in base level, water input, and sediment input. Such knowledge is necessary to quantify past environmental change from terrace records or sedimentary deposits and to disentangle the multiple possible causes for terrace formation and sediment deposition. Here, we use a set of seven physical experiments to explore terrace formation and sediment export from a single, braided channel that is perturbed by changes in upstream water discharge or sediment supply, or through downstream base-level fall. Each perturbation differently affects (1) the geometry of terraces and channels, (2) the timing of terrace cutting, and (3) the transient response of sediment export from the basin. In general, an increase in water discharge leads to near-instantaneous channel incision across the entire fluvial system and consequent local terrace cutting, thus preserving the initial channel slope on terrace surfaces, and it also produces a transient increase in sediment export from the system. In contrast, a decreased upstream sediment-supply rate may result in longer lag times before terrace cutting, leading to terrace slopes that differ from the initial channel slope, and also lagged responses in sediment export. Finally, downstream base-level fall triggers the upstream propagation of a diffuse knickzone, forming terraces with upstream-decreasing ages. The slope of terraces triggered by base-level fall mimics that of the newly adjusted active channel, whereas slopes of terraces triggered by a decrease in upstream sediment discharge or an increase in upstream water discharge are steeper compared to the new equilibrium channel. By combining fillterrace records with constraints on sediment export, we can distinguish among environmental perturbations that would otherwise remain unresolved when using just one of these records.}, language = {en} } @phdthesis{Thonicke2019, author = {Thonicke, Kirsten}, title = {The influence of disturbance, climate extremes and land-use change on vegetation dynamics}, school = {Universit{\"a}t Potsdam}, year = {2019}, language = {en} } @article{TanskiBergstedtBevingtonetal.2019, author = {Tanski, George and Bergstedt, Helena and Bevington, Alexandre and Bonnaventure, Philip and Bouchard, Frederic and Coch, Caroline and Dumais, Simon and Evgrafova, Alevtina and Frauenfeld, Oliver W. and Frederick, Jennifer and Fritz, Michael and Frolov, Denis and Harder, Silvie and Hartmeyer, Ingo and Heslop, Joanne and Hoegstroem, Elin and Johansson, Margareta and Kraev, Gleb and Kuznetsova, Elena and Lenz, Josefine and Lupachev, Alexey and Magnin, Florence and Martens, Jannik and Maslakov, Alexey and Morgenstern, Anne and Nieuwendam, Alexandre and Oliva, Marc and Radosavljevi, Boris and Ramage, Justine Lucille and Schneider, Andrea and Stanilovskaya, Julia and Strauss, Jens and Trochim, Erin and Vecellio, Daniel J. and Weber, Samuel and Lantuit, Hugues}, title = {The Permafrost Young Researchers Network (PYRN) is getting older}, series = {Polar record}, volume = {55}, journal = {Polar record}, number = {4}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0032-2474}, doi = {10.1017/S0032247418000645}, pages = {216 -- 219}, year = {2019}, abstract = {A lasting legacy of the International Polar Year (IPY) 2007-2008 was the promotion of the Permafrost Young Researchers Network (PYRN), initially an IPY outreach and education activity by the International Permafrost Association (IPA). With the momentum of IPY, PYRN developed into a thriving network that still connects young permafrost scientists, engineers, and researchers from other disciplines. This research note summarises (1) PYRN's development since 2005 and the IPY's role, (2) the first 2015 PYRN census and survey results, and (3) PYRN's future plans to improve international and interdisciplinary exchange between young researchers. The review concludes that PYRN is an established network within the polar research community that has continually developed since 2005. PYRN's successful activities were largely fostered by IPY. With >200 of the 1200 registered members active and engaged, PYRN is capitalising on the availability of social media tools and rising to meet environmental challenges while maintaining its role as a successful network honouring the legacy of IPY.}, language = {en} } @phdthesis{Sterzel2019, author = {Sterzel, Till}, title = {Analyzing global typologies of socio-ecological vulnerability}, doi = {10.25932/publishup-42883}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428837}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2019}, abstract = {On a planetary scale human populations need to adapt to both socio-economic and environmental problems amidst rapid global change. This holds true for coupled human-environment (socio-ecological) systems in rural and urban settings alike. Two examples are drylands and urban coasts. Such socio-ecological systems have a global distribution. Therefore, advancing the knowledge base for identifying socio-ecological adaptation needs with local vulnerability assessments alone is infeasible: The systems cover vast areas, while funding, time, and human resources for local assessments are limited. They are lacking in low an middle-income countries (LICs and MICs) in particular. But places in a specific socio-ecological system are not only unique and complex - they also exhibit similarities. A global patchwork of local rural drylands vulnerability assessments of human populations to socio-ecological and environmental problems has already been reduced to a limited number of problem structures, which typically cause vulnerability. However, the question arises whether this is also possible in urban socio-ecological systems. The question also arises whether these typologies provide added value in research beyond global change. Finally, the methodology employed for drylands needs refining and standardizing to increase its uptake in the scientific community. In this dissertation, I set out to fill these three gaps in research. The geographical focus in my dissertation is on LICs and MICs, which generally have lower capacities to adapt, and greater adaptation needs, regarding rapid global change. Using a spatially explicit indicator-based methodology, I combine geospatial and clustering methods to identify typical configurations of key factors in case studies causing vulnerability to human populations in two specific socio-ecological systems. Then I use statistical and analytical methods to interpret and appraise both the typical configurations and the global typologies they constitute. First, I improve the indicator-based methodology and then reanalyze typical global problem structures of socio-ecological drylands vulnerability with seven indicator datasets. The reanalysis confirms the key tenets and produces a more realistic and nuanced typology of eight spatially explicit problem structures, or vulnerability profiles: Two new profiles with typically high natural resource endowment emerge, in which overpopulation has led to medium or high soil erosion. Second, I determine whether the new drylands typology and its socio-ecological vulnerability concept advance a thematically linked scientific debate in human security studies: what drives violent conflict in drylands? The typology is a much better predictor for conflict distribution and incidence in drylands than regression models typically used in peace research. Third, I analyze global problem structures typically causing vulnerability in an urban socio-ecological system - the rapidly urbanizing coastal fringe (RUCF) - with eleven indicator datasets. The RUCF also shows a robust typology, and its seven profiles show huge asymmetries in vulnerability and adaptive capacity. The fastest population increase, lowest income, most ineffective governments, most prevalent poverty, and lowest adaptive capacity are all typically stacked in two profiles in LICs. This shows that beyond local case studies tropical cyclones and/or coastal flooding are neither stalling rapid population growth, nor urban expansion, in the RUCF. I propose entry points for scaling up successful vulnerability reduction strategies in coastal cities within the same vulnerability profile. This dissertation shows that patchworks of local vulnerability assessments can be generalized to structure global socio-ecological vulnerabilities in both rural and urban socio-ecological systems according to typical problems. In terms of climate-related extreme events in the RUCF, conflicting problem structures and means to deal with them are threatening to widen the development gap between LICs and high-income countries unless successful vulnerability reduction measures are comprehensively scaled up. The explanatory power for human security in drylands warrants further applications of the methodology beyond global environmental change research in the future. Thus, analyzing spatially explicit global typologies of socio-ecological vulnerability is a useful complement to local assessments: The typologies provide entry points for where to consider which generic measures to reduce typical problem structures - including the countless places without local assessments. This can save limited time and financial resources for adaptation under rapid global change.}, language = {en} } @article{SteirouGerlitzApeletal.2019, author = {Steirou, Eva and Gerlitz, Lars and Apel, Heiko and Sun, Xun and Merz, Bruno}, title = {Climate influences on flood probabilities across Europe}, series = {Hydrology and earth system sciences : HESS}, volume = {23}, journal = {Hydrology and earth system sciences : HESS}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-23-1305-2019}, pages = {1305 -- 1322}, year = {2019}, abstract = {The link between streamflow extremes and climatology has been widely studied in recent decades. However, a study investigating the effect of large-scale circulation variations on the distribution of seasonal discharge extremes at the European level is missing. Here we fit a climate-informed generalized extreme value (GEV) distribution to about 600 streamflow records in Europe for each of the standard seasons, i.e., to winter, spring, summer and autumn maxima, and compare it with the classical GEV distribution with parameters invariant in time. The study adopts a Bayesian framework and covers the period 1950 to 2016. Five indices with proven influence on the European climate are examined independently as covariates, namely the North Atlantic Oscillation (NAO), the east Atlantic pattern (EA), the east Atlantic-western Russian pattern (EA/WR), the Scandinavia pattern (SCA) and the polar-Eurasian pattern (POL). It is found that for a high percentage of stations the climate-informed model is preferred to the classical model. Particularly for NAO during winter, a strong influence on streamflow extremes is detected for large parts of Europe (preferred to the classical GEV distribution for 46\% of the stations). Climate-informed fits are characterized by spatial coherence and form patterns that resemble relations between the climate indices and seasonal precipitation, suggesting a prominent role of the considered circulation modes for flood generation. For certain regions, such as northwestern Scandinavia and the British Isles, yearly variations of the mean seasonal climate indices result in considerably different extreme value distributions and thus in highly different flood estimates for individual years that can also persist for longer time periods.}, language = {en} } @article{SelleKnorrLischeid2019, author = {Selle, Benny and Knorr, Klaus-Holger and Lischeid, Gunnar}, title = {Mobilisation and transport of dissolved organic carbon and iron in peat catchments-Insights from the Lehstenbach stream in Germany using generalised additive models}, series = {Hydrological processes}, volume = {33}, journal = {Hydrological processes}, number = {25}, publisher = {Wiley}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.13552}, pages = {3213 -- 3225}, year = {2019}, abstract = {During the last decades, increasing exports of both dissolved organic carbon (DOC) and iron were observed from peat catchments in North America and Europe with potential consequences for water quality of streamwater and carbon storages of soils. As mobilisation and transport processes of DOC and iron in peat catchments are only partly understood, the purpose of this study was to elucidate these processes in an intensively monitored and studied system. Specifically, it was hypothesised that dissimilatory iron reduction in riparian peatland soils mobilises DOC initially adsorbed to iron minerals. During stormflow conditions, both DOC and iron will be transported into the stream network. Ferrous iron may be reoxidised at redox interfaces on its way to the stream, and subsequently, ferric iron could be transported together with DOC as complexes. To test these hypotheses, generalised additive models (GAMs) were applied to 14 years of weekly time series of discharge and concentrations of selected solutes measured in a German headwater stream called Lehstenbach. This stream drains a 4.19-km(2) forested mountain catchment; one third of which is covered by riparian peatland soils. We interpreted results of different types of GAM in the way that (a) iron reduction drove the mobilisation of DOC from peatland soils and that (b) both iron and DOC were transported as complexes after their joint mobilisation to and within the steam. It was speculated that low nitrate availability in the uppermost wetland soil layer, particularly during the growing season, promoted iron reduction and thus the mobilisation of DOC. However, the influence of nitrate on the DOC mobilisation remains relatively uncertain. This influence could be further investigated using methods similar to the GAM analysis conducted here for other catchments with long-term data as well as detailed measurements of the relevant species in riparian wetland soils and the adjacent stream network.}, language = {en} } @article{SchoonoverGretRegameyMetzgeretal.2019, author = {Schoonover, Heather A. and Gret-Regamey, Adrienne and Metzger, Marc J. and Ruiz-Frau, Ana and Santos-Reis, Margarida and Scholte, Samantha S. K. and Walz, Ariane and Nicholas, Kimberly A.}, title = {Creating space, aligning motivations, and building trust}, series = {Ecology and society : a journal of integrative science for resilience and sustainability}, volume = {24}, journal = {Ecology and society : a journal of integrative science for resilience and sustainability}, number = {1}, publisher = {Resilience Alliance}, address = {Wolfville}, issn = {1708-3087}, doi = {10.5751/ES-10061-240111}, pages = {13}, year = {2019}, abstract = {Ecosystem services inherently involve people, whose values help define the benefits of nature's services. It is thus important for researchers to involve stakeholders in ecosystem services research. However, a simple and practicable framework to guide such engagement, and in particular to help researchers anticipate and consider key issues and challenges, has not been well explored. Here, we use experience from the 12 case studies in the European Operational Potential of Ecosystem Research Applications (OPERAs) project to propose a stakeholder engagement framework comprising three key elements: creating space, aligning motivations, and building trust. We argue that involving stakeholders in research demands thoughtful reflection from the researchers about what kind of space they want to create, including if and how they want to bring different interests together, how much space they want to allow for critical discussion, and whether there is a role for particular stakeholders to serve as conduits between others. In addition, understanding their own motivations—including values, knowledge, goals, and desired benefits—will help researchers decide when and how to involve stakeholders, identify areas of common ground and potential disagreement, frame the project appropriately, set expectations, and ensure each party is able to see benefits of engaging with each other. Finally, building relationships with stakeholders can be difficult but considering the roles of existing relationships, time, approach, reputation, and belonging can help build mutual trust. Although the three key elements and the paths between them can play out differently depending on the particular research project, we suggest that a research design that considers how to create the space in which researchers and stakeholders will meet, align motivations between researchers and stakeholders, and build mutual trust will help foster productive researcher-stakeholder relationships.}, language = {en} } @article{SchmidtNendelFunketal.2019, author = {Schmidt, Martin and Nendel, Claas and Funk, Roger and Mitchell, Matthew G. E. and Lischeid, Gunnar}, title = {Modeling Yields Response to Shading in the Field-to-Forest Transition Zones in Heterogeneous Landscapes}, series = {Agriculture}, volume = {9}, journal = {Agriculture}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2077-0472}, doi = {10.3390/agriculture9010006}, pages = {15}, year = {2019}, abstract = {In crop modeling and yield predictions, the heterogeneity of agricultural landscapes is usually not accounted for. This heterogeneity often arises from landscape elements like forests, hedges, or single trees and shrubs that cast shadows. Shading from forested areas or shrubs has effects on transpiration, temperature, and soil moisture, all of which affect the crop yield in the adjacent arable land. Transitional gradients of solar irradiance can be described as a function of the distance to the zero line (edge), the cardinal direction, and the height of trees. The magnitude of yield reduction in transition zones is highly influenced by solar irradiance-a factor that is not yet implemented in crop growth models on a landscape level. We present a spatially explicit model for shading caused by forested areas, in agricultural landscapes. With increasing distance to forest, solar irradiance and yield increase. Our model predicts that the shading effect from the forested areas occurs up to 15 m from the forest edge, for the simulated wheat yields, and up to 30 m, for simulated maize. Moreover, we estimated the spatial extent of transition zones, to calculate the regional yield reduction caused by shading of the forest edges, which amounted to 5\% to 8\% in an exemplary region.}, language = {en} } @article{SchmidtLischeidNendel2019, author = {Schmidt, Martin and Lischeid, Gunnar and Nendel, Claas}, title = {Microclimate and matter dynamics in transition zones of forest to arable land}, series = {Agricultural and forest meteorology}, volume = {268}, journal = {Agricultural and forest meteorology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1923}, doi = {10.1016/j.agrformet.2019.01.001}, pages = {1 -- 10}, year = {2019}, abstract = {Human-driven fragmentation of landscapes leads to the formation of transition zones between ecosystems that are characterised by fluxes of matter, energy and information. These transition zones may offer rather inhospitable habitats that could jeopardise biodiversity. On the other hand, transition zones are also reported to be hotspots for biodiversity and even evolutionary processes. The general mechanisms and influence of processes in transition zones are poorly understood. Although heterogeneity and diversity of land use of fragments and the transition zones between them play an important role, most studies only refer to forested transition zones. Often, only an extrapolation of measurements in the different fragments themselves is reported to determine gradients in transition zones. This paper contributes to a quantitative understanding of agricultural landscapes beyond individual ecotopes, and towards connected ecosystem mosaics that may be beneficial for the provision of ecosystem services.}, language = {en} } @phdthesis{Schmidt2019, author = {Schmidt, Martin}, title = {Fragmentation of landscapes: modelling ecosystem services of transition zones}, doi = {10.25932/publishup-44294}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442942}, school = {Universit{\"a}t Potsdam}, pages = {XV, 103}, year = {2019}, abstract = {For millennia, humans have affected landscapes all over the world. Due to horizontal expansion, agriculture plays a major role in the process of fragmentation. This process is caused by a substitution of natural habitats by agricultural land leading to agricultural landscapes. These landscapes are characterized by an alternation of agriculture and other land use like forests. In addition, there are landscape elements of natural origin like small water bodies. Areas of different land use are beside each other like patches, or fragments. They are physically distinguishable which makes them look like a patchwork from an aerial perspective. These fragments are each an own ecosystem with conditions and properties that differ from their adjacent fragments. As open systems, they are in exchange of information, matter and energy across their boundaries. These boundary areas are called transition zones. Here, the habitat properties and environmental conditions are altered compared to the interior of the fragments. This changes the abundance and the composition of species in the transition zones, which in turn has a feedback effect on the environmental conditions. The literature mainly offers information and insights on species abundance and composition in forested transition zones. Abiotic effects, the gradual changes in energy and matter, received less attention. In addition, little is known about non-forested transition zones. For example, the effects on agricultural yield in transition zones of an altered microclimate, matter dynamics or different light regimes are hardly researched or understood. The processes in transition zones are closely connected with altered provisioning and regulating ecosystem services. To disentangle the mechanisms and to upscale the effects, models can be used. My thesis provides insights into these topics: literature was reviewed and a conceptual framework for the quantitative description of gradients of matter and energy in transition zones was introduced. The results of measurements of environmental gradients like microclimate, aboveground biomass and soil carbon and nitrogen content are presented that span from within the forest into arable land. Both the measurements and the literature review could not validate a transition zone of 100 m for abiotic effects. Although this value is often reported and used in the literature, it is likely to be smaller. Further, the measurements suggest that on the one hand trees in transition zones are smaller compared to those in the interior of the fragments, while on the other hand less biomass was measured in the arable lands' transition zone. These results support the hypothesis that less carbon is stored in the aboveground biomass in transition zones. The soil at the edge (zero line) between adjacent forest and arable land contains more nitrogen and carbon content compared to the interior of the fragments. One-year measurements in the transition zone also provided evidence that microclimate is different compared to the fragments' interior. To predict the possible yield decreases that transition zones might cause, a modelling approach was developed. Using a small virtual landscape, I modelled the effect of a forest fragment shading the adjacent arable land and the effects of this on yield using the MONICA crop growth model. In the transition zone yield was less compared to the interior due to shading. The results of the simulations were upscaled to the landscape level and exemplarily calculated for the arable land of a whole region in Brandenburg, Germany. The major findings of my thesis are: (1) Transition zones are likely to be much smaller than assumed in the scientific literature; (2) transition zones aren't solely a phenomenon of forested ecosystems, but significantly extend into arable land as well; (3) empirical and modelling results show that transition zones encompass biotic and abiotic changes that are likely to be important to a variety of agricultural landscape ecosystem services.}, language = {en} } @article{SavoyHesse2019, author = {Savoy, Heather and Heße, Falk}, title = {Dimension reduction for integrating data series in Bayesian inversion of geostatistical models}, series = {Stochastic environmental research and risk assessment}, volume = {33}, journal = {Stochastic environmental research and risk assessment}, number = {7}, publisher = {Springer}, address = {New York}, issn = {1436-3240}, doi = {10.1007/s00477-019-01697-9}, pages = {1327 -- 1344}, year = {2019}, abstract = {This study explores methods with which multidimensional data, e.g. time series, can be effectively incorporated into a Bayesian framework for inferring geostatistical parameters. Such series are difficult to use directly in the likelihood estimation procedure due to their high dimensionality; thus, a dimension reduction approach is taken to utilize these measurements in the inference. Two synthetic scenarios from hydrology are explored in which pumping drawdown and concentration breakthrough curves are used to infer the global mean of a log-normally distributed hydraulic conductivity field. Both cases pursue the use of a parametric model to represent the shape of the observed time series with physically-interpretable parameters (e.g. the time and magnitude of a concentration peak), which is compared to subsets of the observations with similar dimensionality. The results from both scenarios highlight the effectiveness for the shape-matching models to reduce dimensionality from 100+ dimensions down to less than five. The models outperform the alternative subset method, especially when the observations are noisy. This approach to incorporating time series observations in the Bayesian framework for inferring geostatistical parameters allows for high-dimensional observations to be faithfully represented in lower-dimensional space for the non-parametric likelihood estimation procedure, which increases the applicability of the framework to more observation types. Although the scenarios are both from hydrogeology, the methodology is general in that no assumptions are made about the subject domain. Any application that requires the inference of geostatistical parameters using series in either time of space can use the approach described in this paper.}, language = {en} } @article{SairamSchroeterLuedtkeetal.2019, author = {Sairam, Nivedita and Schr{\"o}ter, Kai and L{\"u}dtke, Stefan and Merz, Bruno and Kreibich, Heidi}, title = {Quantifying Flood Vulnerability Reduction via Private Precaution}, series = {Earth future}, volume = {7}, journal = {Earth future}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2328-4277}, doi = {10.1029/2018EF000994}, pages = {235 -- 249}, year = {2019}, abstract = {Private precaution is an important component in contemporary flood risk management and climate adaptation. However, quantitative knowledge about vulnerability reduction via private precautionary measures is scarce and their effects are hardly considered in loss modeling and risk assessments. However, this is a prerequisite to enable temporally dynamic flood damage and risk modeling, and thus the evaluation of risk management and adaptation strategies. To quantify the average reduction in vulnerability of residential buildings via private precaution empirical vulnerability data (n = 948) is used. Households with and without precautionary measures undertaken before the flood event are classified into treatment and nontreatment groups and matched. Postmatching regression is used to quantify the treatment effect. Additionally, we test state-of-the-art flood loss models regarding their capability to capture this difference in vulnerability. The estimated average treatment effect of implementing private precaution is between 11 and 15 thousand EUR per household, confirming the significant effectiveness of private precautionary measures in reducing flood vulnerability. From all tested flood loss models, the expert Bayesian network-based model BN-FLEMOps and the rule-based loss model FLEMOps perform best in capturing the difference in vulnerability due to private precaution. Thus, the use of such loss models is suggested for flood risk assessments to effectively support evaluations and decision making for adaptable flood risk management.}, language = {en} } @article{RoezerKreibichSchroeteretal.2019, author = {R{\"o}zer, Viktor and Kreibich, Heidi and Schr{\"o}ter, Kai and M{\"u}ller, Meike and Sairam, Nivedita and Doss-Gollin, James and Lall, Upmanu and Merz, Bruno}, title = {Probabilistic Models Significantly Reduce Uncertainty in Hurricane Harvey Pluvial Flood Loss Estimates}, series = {Earths future}, volume = {7}, journal = {Earths future}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2328-4277}, doi = {10.1029/2018EF001074}, pages = {384 -- 394}, year = {2019}, abstract = {Pluvial flood risk is mostly excluded in urban flood risk assessment. However, the risk of pluvial flooding is a growing challenge with a projected increase of extreme rainstorms compounding with an ongoing global urbanization. Considered as a flood type with minimal impacts when rainfall rates exceed the capacity of urban drainage systems, the aftermath of rainfall-triggered flooding during Hurricane Harvey and other events show the urgent need to assess the risk of pluvial flooding. Due to the local extent and small-scale variations, the quantification of pluvial flood risk requires risk assessments on high spatial resolutions. While flood hazard and exposure information is becoming increasingly accurate, the estimation of losses is still a poorly understood component of pluvial flood risk quantification. We use a new probabilistic multivariable modeling approach to estimate pluvial flood losses of individual buildings, explicitly accounting for the associated uncertainties. Except for the water depth as the common most important predictor, we identified the drivers for having loss or not and for the degree of loss to be different. Applying this approach to estimate and validate building structure losses during Hurricane Harvey using a property level data set, we find that the reliability and dispersion of predictive loss distributions vary widely depending on the model and aggregation level of property level loss estimates. Our results show that the use of multivariable zero-inflated beta models reduce the 90\% prediction intervalsfor Hurricane Harvey building structure loss estimates on average by 78\% (totalling U.S.\$3.8 billion) compared to commonly used models.}, language = {en} } @article{ReinhardGeisslerBlaum2019, author = {Reinhard, Johanna E. and Geissler, Katja and Blaum, Niels}, title = {Short-term responses of darkling beetles (Coleoptera:Tenebrionidae) to the effects of fire and grazing in savannah rangeland}, series = {Insect Conservation and Diversity}, volume = {12}, journal = {Insect Conservation and Diversity}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1752-458X}, doi = {10.1111/icad.12324}, pages = {39 -- 48}, year = {2019}, abstract = {Fire and grazing shape biodiversity in savannah landscapes. In land use management, knowing the effects of fire and grazing on biodiversity are important in order to ensure environmental sustainability. Beetles specifically are indicators of the biodiversity response to fire and grazing. A grazing exclusion and burning experiment in a split-plot design was used in order to investigate the interacting effects of fire and wildlife grazing on biomass, diversity, and species composition of darkling beetles (Coleoptera, Tenebrionidae) over time after fire. Darkling beetle species richness and diversity were responding in a three-way-interaction to fire, grazing, and time after fire, whereby biomass of darkling beetles remained unaffected and species compositional changes were attributed to seasonal changes of time only. Fire on ungrazed plots had a negative effect on species diversity and richness 2 weeks and 6 months post fire, whereas fire on grazed plots had no impact on species diversity and richness. Grazing only lowered species diversity and richness 6 months after fire treatments. Results suggest that grazing overrides the effects of fire and that the similar effects caused by fire and grazing are due to niche and assemblage simplification of the habitat.}, language = {en} } @article{PenaAnguloNadalRomeroGonzalezHidalgoetal.2019, author = {Pena-Angulo, D. and Nadal-Romero, E. and Gonzalez-Hidalgo, J. C. and Albaladejo, J. and Andreu, V and Bagarello, V and Barhi, H. and Batalla, R. J. and Bernal, S. and Bienes, R. and Campo, J. and Campo-Bescos, M. A. and Canatario-Duarte, A. and Canton, Y. and Casali, J. and Castillo, V and Cerda, Artemi and Cheggour, A. and Cid, Patricio and Cortesi, N. and Desir, G. and Diaz-Pereira, E. and Espigares, T. and Estrany, Joan and Fernandez-Raga, M. and Ferreira, Carla S. S. and Ferro, Vito and Gallart, Francesc and Gimenez, R. and Gimeno, E. and Gomez, J. A. and Gomez-Gutierrez, A. and Gomez-Macpherson, H. and Gonzalez-Pelayo, O. and Hueso-Gonzalez, P. and Kairis, O. and Karatzas, G. P. and Klotz, S. and Kosmas, C. and Lana-Renault, Noemi and Lasanta, T. and Latron, J. and Lazaro, R. and Le Bissonnais, Y. and Le Bouteiller, C. and Licciardello, F. and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Lucia, A. and Marin, C. and Marques, M. J. and Martinez-Fernandez, J. and Martinez-Mena, M. and Martinez-Murillo, J. F. and Mateos, L. and Mathys, N. and Merino-Martin, L. and Moreno-de las Heras, M. and Moustakas, N. and Nicolau, J. M. and Novara, A. and Pampalone, V and Raclot, D. and Rodriguez-Blanco, M. L. and Rodrigo-Comino, Jes{\´u}s and Romero-Diaz, A. and Roose, E. and Rubio, J. L. and Ruiz-Sinoga, J. D. and Schnabel, S. and Senciales-Gonzalez, J. M. and Simonneaux, V and Sole-Benet, A. and Taguas, E. and Taboada-Castro, M. M. and Taboada-Castro, M. T. and Todisco, Francesca and Ubeda, X. and Varouchakis, E. A. and Vericat, Damia and Wittenberg, L. and Zabaleta, A. and Zorn, M.}, title = {Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin}, series = {Journal of hydrology}, volume = {571}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2019.01.059}, pages = {390 -- 405}, year = {2019}, abstract = {Soil degradation by water is a serious environmental problem worldwide, with specific climatic factors being the major causes. We investigated the relationships between synoptic atmospheric patterns (i.e. weather types, WTs) and runoff, erosion and sediment yield throughout the Mediterranean basin by analyzing a large database of natural rainfall events at 68 research sites in 9 countries. Principal Component Analysis (PCA) was used to identify spatial relationships of the different WTs including three hydro-sedimentary variables: rainfall, runoff, and sediment yield (SY, used to refer to both soil erosion measured at plot scale and sediment yield registered at catchment scale). The results indicated 4 spatial classes of rainfall and runoff: (a) northern sites dependent on North (N) and North West (NW) flows; (b) eastern sites dependent on E and NE flows; (c) southern sites dependent on S and SE flows; and, finally, (d) western sites dependent on W and SW flows. Conversely, three spatial classes are identified for SY characterized by: (a) N and NE flows in northern sites (b) E flows in eastern sites, and (c) W and SW flows in western sites. Most of the rainfall, runoff and SY occurred during a small number of daily events, and just a few WTs accounted for large percentages of the total. Our results confirm that characterization by WT improves understanding of the general conditions under which runoff and SY occur, and provides useful information for understanding the spatial variability of runoff, and SY throughout the Mediterranean basin. The approach used here could be useful to aid of the design of regional water management and soil conservation measures.}, language = {en} } @article{PatenaudeLautenbachPatersonetal.2019, author = {Patenaude, Genevieve and Lautenbach, Sven and Paterson, James S. and Locatelli, Tommaso and Dormann, Carsten F. and Metzger, Marc J. and Walz, Ariane}, title = {Breaking the ecosystem services glass ceiling: realising impact}, series = {Regional environmental change}, volume = {19}, journal = {Regional environmental change}, number = {8}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-018-1434-3}, pages = {2261 -- 2274}, year = {2019}, abstract = {Through changes in policy and practice, the inherent intent of the ecosystem services (ES) concept is to safeguard ecosystems for human wellbeing. While impact is intrinsic to the concept, little is known about how and whether ES science leads to impact. Evidence of impact is needed. Given the lack of consensus on what constitutes impact, we differentiate between attributional impacts (transitional impacts on policy, practice, awareness or other drivers) and consequential impacts (real, on-the-ground impacts on biodiversity, ES, ecosystem functions and human wellbeing) impacts. We conduct rigorous statistical analyses on three extensive databases for evidence of attributional impact (the form most prevalently reported): the IPBES catalogue (n = 102), the Lautenbach systematic review (n = 504) and a 5-year in-depth survey of the OPERAs Exemplars (n = 13). To understand the drivers of impacts, we statistically analyse associations between study characteristics and impacts. Our findings show that there exists much confusion with regard to defining ES science impacts, and that evidence of attributional impact is scarce: only 25\% of the IPBES assessments self-reported impact (7\% with evidence); in our meta-analysis of Lautenbach's systematic review, 33\% of studies provided recommendations indicating intent of impacts. Systematic impact reporting was imposed by design on the OPERAs Exemplars: 100\% reported impacts, suggesting the importance of formal impact reporting. The generalised linear models and correlations between study characteristics and attributional impact dimensions highlight four characteristics as minimum baseline for impact: study robustness, integration of policy instruments into study design, stakeholder involvement and type of stakeholders involved. Further in depth examination of the OPERAs Exemplars showed that study characteristics associated with impact on awareness and practice differ from those associated with impact on policy: to achieve impact along specific dimensions, bespoke study designs are recommended. These results inform targeted recommendations for ES science to break its impact glass ceiling.}, language = {en} } @article{ParkBatallaBirgandetal.2019, author = {Park, Jungsu and Batalla, Ramon J. and Birgand, Francois and Esteves, Michel and Gentile, Francesco and Harrington, Joseph R. and Navratil, Oldrich and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Vericat, Damia}, title = {Influences of Catchment and River Channel Characteristics on the Magnitude and Dynamics of Storage and Re-Suspension of Fine Sediments in River Beds}, series = {Water}, volume = {11}, journal = {Water}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w11050878}, pages = {23}, year = {2019}, abstract = {Fine particles or sediments are one of the important variables that should be considered for the proper management of water quality and aquatic ecosystems. In the present study, the effect of catchment characteristics on the performance of an already developed model for the estimation of fine sediments dynamics between the water column and sediment bed was tested, using 13 catchments distributed worldwide. The model was calibrated to determine two optimal model parameters. The first is the filtration parameter, which represents the filtration of fine sediments through pores of the stream bed during the recession period of a flood event. The second parameter is the bed erosion parameter that represents the active layer, directly related to the re-suspension of fine sediments during a flood event. A dependency of the filtration parameter with the catchment area was observed in catchments smaller than 100 km(2), whereas no particular relationship was observed for larger catchments (>100 km(2)). In contrast, the bed erosion parameter does not show a noticeable dependency with the area or other environmental characteristics. The model estimated the mass of fine sediments released from the sediment bed to the water column during flood events in the 13 catchments within 23\% bias.}, language = {en} } @article{MusterRileyRothetal.2019, author = {Muster, Sina and Riley, William J. and Roth, Kurt and Langer, Moritz and Aleina, Fabio Cresto and Koven, Charles D. and Lange, Stephan and Bartsch, Annett and Grosse, Guido and Wilson, Cathy J. and Jones, Benjamin M. and Boike, Julia}, title = {Size distributions of arctic waterbodies reveal consistent relations in their statistical moments in space and time}, series = {Frontiers in Earth Science}, volume = {7}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2019.00005}, pages = {15}, year = {2019}, abstract = {Arctic lowlands are characterized by large numbers of small waterbodies, which are known to affect surface energy budgets and the global carbon cycle. Statistical analysis of their size distributions has been hindered by the shortage of observations at sufficiently high spatial resolutions. This situation has now changed with the high-resolution (<5 m) circum-Arctic Permafrost Region Pond and Lake (PeRL) database recently becoming available. We have used this database to make the first consistent, high-resolution estimation of Arctic waterbody size distributions, with surface areas ranging from 0.0001 km(2) (100 m(2)) to 1 km(2). We found that the size distributions varied greatly across the thirty study regions investigated and that there was no single universal size distribution function (including power-law distribution functions) appropriate across all of the study regions. We did, however, find close relationships between the statistical moments (mean, variance, and skewness) of the waterbody size distributions from different study regions. Specifically, we found that the spatial variance increased linearly with mean waterbody size (R-2 = 0.97, p < 2.2e-16) and that the skewness decreased approximately hyperbolically. We have demonstrated that these relationships (1) hold across the 30 Arctic study regions covering a variety of (bio)climatic and permafrost zones, (2) hold over time in two of these study regions for which multi-decadal satellite imagery is available, and (3) can be reproduced by simulating rising water levels in a high-resolution digital elevation model. The consistent spatial and temporal relationships between the statistical moments of the waterbody size distributions underscore the dominance of topographic controls in lowland permafrost areas. These results provide motivation for further analyses of the factors involved in waterbody development and spatial distribution and for investigations into the possibility of using statistical moments to predict future hydrologic dynamics in the Arctic.}, language = {en} } @phdthesis{Michalczyk2019, author = {Michalczyk, Anna}, title = {Modelling of nitrogen cycles in intensive winter wheat-summer maize double cropping systems in the North China Plain}, doi = {10.25932/publishup-44421}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-444213}, school = {Universit{\"a}t Potsdam}, pages = {X, 154}, year = {2019}, abstract = {The North China Plain (NCP) is one of the most productive and intensive agricultural regions in China. High doses of mineral nitrogen (N) fertiliser, often combined with flood irrigation, are applied, resulting in N surplus, groundwater depletion and environmental pollution. The objectives of this thesis were to use the HERMES model to simulate the N cycle in winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) double crop rotations and show the performance of the HERMES model, of the new ammonia volatilisation sub-module and of the new nitrification inhibition tool in the NCP. Further objectives were to assess the models potential to save N and water on plot and county scale, as well as on short and long-term. Additionally, improved management strategies with the help of a model-based nitrogen fertiliser recommendation (NFR) and adapted irrigation, should be found. Results showed that the HERMES model performed well under growing conditions of the NCP and was able to describe the relevant processes related to soil-plant interactions concerning N and water during a 2.5 year field experiment. No differences in grain yield between the real-time model-based NFR and the other treatments of the experiments on plot scale in Quzhou County could be found. Simulations with increasing amounts of irrigation resulted in significantly higher N leaching, higher N requirements of the NFR and reduced yields. Thus, conventional flood irrigation as currently practised by the farmers bears great uncertainties and exact irrigation amounts should be known for future simulation studies. In the best-practice scenario simulation on plot-scale, N input and N leaching, but also irrigation water could be reduced strongly within 2 years. Thus, the model-based NFR in combination with adapted irrigation had the highest potential to reduce nitrate leaching, compared to farmers practice and mineral N (Nmin)-reduced treatments. Also the calibrated and validated ammonia volatilisation sub-module of the HERMES model worked well under the climatic and soil conditions of northern China. Simple ammonia volatilisation approaches gave also satisfying results compared to process-oriented approaches. During the simulation with Ammonium sulphate Nitrate with nitrification inhibitor (ASNDMPP) ammonia volatilisation was higher than in the simulation without nitrification inhibitor, while the result for nitrate leaching was the opposite. Although nitrification worked well in the model, nitrification-born nitrous oxide emissions should be considered in future. Results of the simulated annual long-term (31 years) N losses in whole Quzhou County in Hebei Province were 296.8 kg N ha-1 under common farmers practice treatment and 101.7 kg N ha-1 under optimised treatment including NFR and automated irrigation (OPTai). Spatial differences in simulated N losses throughout Quzhou County, could only be found due to different N inputs. Simulations of an optimised treatment, could save on average more than 260 kg N ha-1a-1 from fertiliser input and 190 kg N ha-1a-1 from N losses and around 115.7 mm a-1 of water, compared to farmers practice. These long-term simulation results showed lower N and water saving potential, compared to short-term simulations and underline the necessity of long-term simulations to overcome the effect of high initial N stocks in soil. Additionally, the OPTai worked best on clay loam soil except for a high simulated denitrification loss, while the simulations using farmers practice irrigation could not match the actual water needs resulting in yield decline, especially for winter wheat. Thus, a precise adaption of management to actual weather conditions and plant growth needs is necessary for future simulations. However, the optimised treatments did not seem to be able to maintain the soil organic matter pools, even with full crop residue input. Extra organic inputs seem to be required to maintain soil quality in the optimised treatments. HERMES is a relatively simple model, with regard to data input requirements, to simulate the N cycle. It can offer interpretation of management options on plot, on county and regional scale for extension and research staff. Also in combination with other N and water saving methods the model promises to be a useful tool.}, language = {en} } @article{MartinLopezLeisterCruzetal.2019, author = {Martin-Lopez, Berta and Leister, Ines and Cruz, Pedro Lorenzo and Palomo, Ignacio and Gret-Regamey, Adrienne and Harrison, Paula A. and Lavorel, Sandra and Locatelli, Bruno and Luque, Sandra and Walz, Ariane}, title = {Nature's contributions to people in mountains}, series = {PLoS one}, volume = {14}, journal = {PLoS one}, number = {6}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0217847}, pages = {24}, year = {2019}, abstract = {Mountains play a key role in the provision of nature's contributions to people (NCP) worldwide that support societies' quality of life. Simultaneously, mountains are threatened by multiple drivers of change. Due to the complex interlinkages between biodiversity, quality of life and drivers of change, research on NCP in mountains requires interdisciplinary approaches. In this study, we used the conceptual framework of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) and the notion of NCP to determine to what extent previous research on ecosystem services in mountains has explored the different components of the IPBES conceptual framework. We conducted a systematic review of articles on ecosystem services in mountains published up to 2016 using the Web of Science and Scopus databases. Descriptive statistical and network analyses were conducted to explore the level of research on the components of the IPBES framework and their interactions. Our results show that research has gradually become more interdisciplinary by studying higher number of NCP, dimensions of quality of life, and indirect drivers of change. Yet, research focusing on biodiversity, regulating NCP and direct drivers has decreased over time. Furthermore, despite the fact that research on NCP in mountains becoming more policy-oriented over time, mainly in relation to payments for ecosystem services, institutional responses remained underexplored in the reviewed studies. Finally, we discuss the relevant knowledge gaps that should be addressed in future research in order to contribute to IPBES.}, language = {en} } @phdthesis{Marquart2019, author = {Marquart, Arnim}, title = {Feedbacks between macropores and soil water infiltration in semi-arid savanna systems}, pages = {146}, year = {2019}, language = {en} } @misc{LopezTarazonBronstertThiekenetal.2019, author = {Lopez Tarazon, Jos{\´e} Andr{\´e}s and Bronstert, Axel and Thieken, Annegret and Petrow, Theresia}, title = {The effects of global change on floods, fluvial geomorphology and related hazards in mountainous rivers}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {669}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2019.03.026}, pages = {7 -- 10}, year = {2019}, language = {en} } @article{LeueHoffmannHieroldetal.2019, author = {Leue, Martin and Hoffmann, Carsten and Hierold, Wilfried and Sommer, Michael}, title = {In-situ multi-sensor characterization of soil cores along an erosion deposition gradient}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {182}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2019.104140}, pages = {11}, year = {2019}, abstract = {Soil landscape research is faced with wide-ranging questions of soil erosion, precision farming, and agricultural risk management. Digital Soil Morphometrics is a powerful tool to provide respective answers or recommendations but requires soil data from the pedon-to-field scale with high horizontal and vertical resolutions, including the subsoil. We present an efficient sampling and measurement method for easily obtainable soil driving cores with low-destructive preparation. Elemental contents and soil organic and mineral matter composition were measured rapidly and in large numbers using a multi-sensor approach, i.e., visible and near infrared (Vis-NIR), diffuse reflectance infrared Fourier transform (DRIFT), and X-ray fluorescence (XRF) spectroscopy. The suitability of the approach with respect to three-dimensional soil landscape models was tested using soils along a slope representing different stages of erosion and deposition in a hummocky landscape under arable land use (Calcaric Regosols, Calcic Luvisols, Luvic Stagnosols, Gleyic-Colluvic Regosols). The combination of soil core sampling, pedological description, and three spectroscopic techniques enabled rapid determination and interpretation of horizontal and vertical spatial distributions of soil organic carbon (SOC), soil organic and mineral matter composition, as well as CaCO3, Fe, and Mn contents. Depth profiles for SOC, CaCO3, and Fe contents were suitable indicators for site-specific degrees of erosion and matter transport processes at the pedon-to-field scale. Fe and Mn profiles helped identifying zones of reductive and oxic domains in subsoils (gleyzation). Further methodical developments should implement plant-availability of nutrients, characterization of Fe oxides, and calibration of the spectroscopic techniques to field-moist samples.}, language = {en} } @misc{LentonRockstroemGaffneyetal.2019, author = {Lenton, Timothy M. and Rockstroem, Johan and Gaffney, Owen and Rahmstorf, Stefan and Richardson, Katherine and Steffen, Will and Schellnhuber, Hans Joachim}, title = {Climate tipping points - too risky to bet against : Comment}, series = {Nature : the international weekly journal of science}, volume = {575}, journal = {Nature : the international weekly journal of science}, number = {7784}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/d41586-019-03595-0}, pages = {592 -- 595}, year = {2019}, language = {en} } @article{LawrenceSchaefer2019, author = {Lawrence, Mark and Sch{\"a}fer, Stefan}, title = {Promises and perils of the Paris Agreement}, series = {Science}, volume = {364}, journal = {Science}, number = {6443}, publisher = {American Association for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aaw4602}, pages = {829 -- 830}, year = {2019}, language = {en} } @article{LandholmPradhanKropp2019, author = {Landholm, David M. and Pradhan, Prajal and Kropp, J{\"u}rgen}, title = {Diverging forest land use dynamics induced by armed conflict across the tropics}, series = {Global environmental change : human and policy dimensions}, volume = {56}, journal = {Global environmental change : human and policy dimensions}, publisher = {Elsevier}, address = {Oxford}, issn = {0959-3780}, doi = {10.1016/j.gloenvcha.2019.03.006}, pages = {86 -- 94}, year = {2019}, abstract = {Armed conflicts trigger region-specific mechanisms that affect land use change. Deforestation is presented as one of the most common negative environmental impacts resulting from armed conflicts, with relevant consequences in terms of greenhouse gas emissions and loss of ecosystem services. However, the impact of armed conflict on forests is complex and may simultaneously lead to positive and negative environmental outcomes, i.e. forest regrowth and deforestation, in different regions even within a country. We investigate the impact that armed conflict exerted over forest dynamics at different spatial scales in Colombia and for the global tropics during the period 1992-2015. Through the analysis of its internally displaced population (departures) our results suggest that, albeit finding forest regrowth in some municipalities, the Colombian conflict predominantly exerted a negative impact on its forests. A further examination of georeferenced fighting locations in Colombia and across the globe shows that conflict areas were 8 and 4 times more likely to undergo deforestation, respectively, in the following years in relation to average deforestation rates. This study represents a municipality level, long-term spatial analysis of the diverging effects the Colombian conflict exerted over its forest dynamics over two distinct periods of increasing and decreasing conflict intensity. Moreover, it presents the first quantified estimate of conflict's negative impact on forest ecosystems across the globe. The relationship between armed conflict and land use change is of global relevance given the recent increase of armed conflicts across the world and the importance of a possible exacerbation of armed conflicts and migration as climate change impacts increase.}, language = {en} } @article{KozickaWeberKalkuhl2019, author = {Kozicka, Marta and Weber, Regine and Kalkuhl, Matthias}, title = {Cash vs. in-kind transfers}, series = {Food Security}, volume = {11}, journal = {Food Security}, number = {4}, publisher = {Springer}, address = {New York}, issn = {1876-4517}, doi = {10.1007/s12571-019-00942-x}, pages = {915 -- 927}, year = {2019}, abstract = {Historically, India has relied on subsidizing staple food as a major instrument in improving food security. Recently, however, cash transfers have entered the debate as an alternative, as they are associated with lower market distortions, leakages and fiscal costs. This study contributes to this debate by analyzing India's Targeted Public Distribution System (TPDS). Our main objective was to explain the under-purchase, or low take-up, from the TPDS, which is typically attributed to 'leakage', i.e. the diversion of food grains from eligible consumers. We provide an alternative solution based on self-targeting; while poorer households increase their consumption from the TPDS, wealthier households restrain from consuming subsidized commodities. Using a large household dataset, we estimated that such a voluntary opt-out system, based on income, would save a minimum of 6.5\% of grains released through the TPDS. Besides these demand-driven aspects, our analysis indicates that poor regions perform better at lowering the diversion of grains and that large targeting errors exist among female-led households. Finally, we find substantial regional price differences that would benefit the poor and rural population under a uniform cash-transfer system that does not correct for regional price levels.}, language = {en} } @misc{KalkuhlSteckelMontroneetal.2019, author = {Kalkuhl, Matthias and Steckel, Jan Christoph and Montrone, Lorenzo and Jakob, Michael and Peters, J{\"o}rg and Edenhofer, Ottmar}, title = {Successful coal phase-out requires new models of development}, series = {Nature Energy}, volume = {4}, journal = {Nature Energy}, number = {11}, publisher = {Nature Publ. Group}, address = {London}, issn = {2058-7546}, doi = {10.1038/s41560-019-0500-5}, pages = {897 -- 900}, year = {2019}, abstract = {Different energy sources have different spillovers on economic development and industrialization. Pathways of economic development based on renewable energy sources might require additional policies to support industrial development.}, language = {en} } @article{JingHesseKumaretal.2019, author = {Jing, Miao and Hesse, Falk and Kumar, Rohini and Kolditz, Olaf and Kalbacher, Thomas and Attinger, Sabine}, title = {Influence of input and parameter uncertainty on the prediction of catchment-scale groundwater travel time distributions}, series = {Hydrology and earth system sciences : HESS}, volume = {23}, journal = {Hydrology and earth system sciences : HESS}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-23-171-2019}, pages = {171 -- 190}, year = {2019}, abstract = {Groundwater travel time distributions (TTDs) provide a robust description of the subsurface mixing behavior and hydrological response of a subsurface system. Lagrangian particle tracking is often used to derive the groundwater TTDs. The reliability of this approach is subjected to the uncertainty of external forcings, internal hydraulic properties, and the interplay between them. Here, we evaluate the uncertainty of catchment groundwater TTDs in an agricultural catchment using a 3-D groundwater model with an overall focus on revealing the relationship between external forcing, internal hydraulic properties, and TTD predictions. Eight recharge realizations are sampled from a high-resolution dataset of land surface fluxes and states. Calibration-constrained hydraulic conductivity fields (Ks fields) are stochastically generated using the null-space Monte Carlo (NSMC) method for each recharge realization. The random walk particle tracking (RWPT) method is used to track the pathways of particles and compute travel times. Moreover, an analytical model under the random sampling (RS) assumption is fit against the numerical solutions, serving as a reference for the mixing behavior of the model domain. The StorAge Selection (SAS) function is used to interpret the results in terms of quantifying the systematic preference for discharging young/old water. The simulation results reveal the primary effect of recharge on the predicted mean travel time (MTT). The different realizations of calibration-constrained Ks fields moderately magnify or attenuate the predicted MTTs. The analytical model does not properly replicate the numerical solution, and it underestimates the mean travel time. Simulated SAS functions indicate an overall preference for young water for all realizations. The spatial pattern of recharge controls the shape and breadth of simulated TTDs and SAS functions by changing the spatial distribution of particles' pathways. In conclusion, overlooking the spatial nonuniformity and uncertainty of input (forcing) will result in biased travel time predictions. We also highlight the worth of reliable observations in reducing predictive uncertainty and the good interpretability of SAS functions in terms of understanding catchment transport processes.}, language = {en} } @article{IrrgangLantuitGordonetal.2019, author = {Irrgang, Anna Maria and Lantuit, Hugues and Gordon, Richard R. and Piskor, Ashley and Manson, Gavin K.}, title = {Impacts of past and future coastal changes on the Yukon coast - threats for cultural sites, infrastructure, and travel routes}, series = {Arctic Science}, volume = {5}, journal = {Arctic Science}, number = {2}, publisher = {Canadian Science Publishing}, address = {Ottawa}, issn = {2368-7460}, doi = {10.1139/as-2017-0041}, pages = {107 -- 126}, year = {2019}, abstract = {Yukon's Beaufort coast, Canada, is a highly dynamic landscape. Cultural sites, infrastructure, and travel routes used by the local population are particularly vulnerable to coastal erosion. To assess threats to these phenomena, rates of shoreline change for a 210 km length of the coast were analyzed and combined with socioeconomic and cultural information. Rates of shoreline change were derived from aerial and satellite imagery from the 1950s, 1970s, 1990s, and 2011. Using these data, conservative (S1) and dynamic (S2) shoreline projections were constructed to predict shoreline positions for the year 2100. The locations of cultural features in the archives of a Parks Canada database, the Yukon Archaeological Program, and as reported in other literature were combined with projected shoreline position changes. Between 2011 and 2100, approximately 850 ha (S1) and 2660 ha (S2) may erode, resulting in a loss of 45\% (S1) to 61\% (S2) of all cultural features by 2100. The last large, actively used camp area and two nearshore landing strips will likely be threatened by future coastal processes. Future coastal erosion and sedimentation processes are expected to increasingly threaten cultural sites and influence travelling and living along the Yukon coast.}, language = {en} } @article{HuangJacksonDekkersetal.2019, author = {Huang, Wentao and Jackson, Michael J. and Dekkers, Mark J. and Zhang, Yang and Zhang, Bo and Guo, Zhaojie and Dupont-Nivet, Guillaume}, title = {Challenges in isolating primary remanent magnetization from Tethyan carbonate rocks on the Tibetan Plateau: Insight from remagnetized Upper Triassic limestones in the eastern Qiangtang block}, series = {Earth \& planetary science letters}, volume = {523}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2019.06.035}, pages = {15}, year = {2019}, abstract = {Carbonate rocks, widely used for paleomagnetically quantifying the drift history of the Gondwana derived continental blocks of the Tibetan Plateau and evolution of the Paleo/Meso/Neo-Tethys Oceans, are prone to pervasive remagnetization. Identifying remagnetization is difficult because it is commonly undetectable through the classic paleomagnetic field tests. Here we apply comprehensive paleomagnetic, rock magnetic, and petrographic studies to upper Triassic limestones in the eastern Qiangtang block. Our results reveal that detrital/biogenic magnetite, which may carry the primary natural remanent magnetization (NRM), is rarely preserved in these rocks. In contrast, authigenic magnetite and hematite pseudomorphs after pyrite, and monoclinic pyrrhotite record three episodes of remagnetization. The earliest remagnetization was induced by oxidation of early diagenetic pyrite to magnetite, probably related to the collision between the northeastern Tibetan Plateau and the Qiangtang block after closure of the Paleo-Tethys Ocean in the Late Triassic. The second remagnetization, residing in hematite and minor goethite, which is the further subsurface oxidation product of pyrite/magnetite, is possibly related to the development of the localized Cenozoic basins soon after India-Asia collision in the Paleocene. The youngest remagnetization is a combination of thermoviscous and chemical remanent magnetization carried by authigenic magnetite and pyrrhotite, respectively. Our analyses suggest that a high supply of organic carbon during carbonate deposition, prevailing sulfate reducing conditions during early diagenesis, and widespread orogenic fluid migration related to crustal shortening during later diagenesis, have altered the primary remanence of the shallow-water Tethyan carbonate rocks of the Tibetan Plateau. We emphasize that all paleomagnetic results from these rocks must be carefully examined for remagnetization before being used for paleogeographic reconstructions. Future paleomagnetic investigations of the carbonate rocks in orogenic belts should be accompanied by thorough rock magnetic and petrographic studies to determine the origin of the NRM. (C) 2019 Elsevier B.V. All rights reserved.}, language = {en} } @article{HerzschuhCaoLaeppleetal.2019, author = {Herzschuh, Ulrike and Cao, Xianyong and Laepple, Thomas and Dallmeyer, Anne and Telford, Richard J. and Ni, Jian and Chen, Fahu and Kong, Zhaochen and Liu, Guangxiu and Liu, Kam-Biu and Liu, Xingqi and Stebich, Martina and Tang, Lingyu and Tian, Fang and Wang, Yongbo and Wischnewski, Juliane and Xu, Qinghai and Yan, Shun and Yang, Zhenjing and Yu, Ge and Zhang, Yun and Zhao, Yan and Zheng, Zhuo}, title = {Position and orientation of the westerly jet determined Holocene rainfall patterns in China}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-09866-8}, pages = {8}, year = {2019}, abstract = {Proxy-based reconstructions and modeling of Holocene spatiotemporal precipitation patterns for China and Mongolia have hitherto yielded contradictory results indicating that the basic mechanisms behind the East Asian Summer Monsoon and its interaction with the westerly jet stream remain poorly understood. We present quantitative reconstructions of Holocene precipitation derived from 101 fossil pollen records and analyse them with the help of a minimal empirical model. We show that the westerly jet-stream axis shifted gradually southward and became less tilted since the middle Holocene. This was tracked by the summer monsoon rain band resulting in an early-Holocene precipitation maximum over most of western China, a mid-Holocene maximum in north-central and northeastern China, and a late-Holocene maximum in southeastern China. Our results suggest that a correct simulation of the orientation and position of the westerly jet stream is crucial to the reliable prediction of precipitation patterns in China and Mongolia.}, language = {en} } @article{HerppichMartinToetzkeetal.2019, author = {Herppich, Werner B. and Martin, Craig E. and T{\"o}tzke, Christian and Manke, Ingo and Kardjilov, Nikolay}, title = {External water transport is more important than vascular transport in the extreme atmospheric epiphyte Tillandsia usneoides (Spanish moss)}, series = {Plant, cell \& environment : cell physiology, whole-plant physiology, community physiology}, volume = {42}, journal = {Plant, cell \& environment : cell physiology, whole-plant physiology, community physiology}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {0140-7791}, doi = {10.1111/pce.13496}, pages = {1645 -- 1656}, year = {2019}, abstract = {Most epiphytic bromeliads, especially those in the genus Tillandsia, lack functional roots and rely on the absorption of water and nutrients by large, multicellular trichomes on the epidermal surfaces of leaves and stems. Another important function of these structures is the spread of water over the epidermal surface by capillary action between trichome "wings" and epidermal surface. Although critical for the ultimate absorption by these plants, understanding of this function of trichomes is primarily based on light microscope observations. To better understand this phenomenon, the distribution of water was followed by its attenuation of cold neutrons following application of H2O to the cut end of Tillandsia usneoides shoots. Experiments confirmed the spread of added water on the external surfaces of this "atmospheric" epiphyte. In a morphologically and physiologically similar plant lacking epidermal trichomes, water added to the cut end of a shoot clearly moved via its internal xylem and not on its epidermis. Thus, in T. usneoides, water moves primarily by capillarity among the overlapping trichomes forming a dense indumentum on shoot surfaces, while internal vascular water movement is less likely. T. usneoides, occupying xeric microhabitats, benefits from reduction of water losses by low-shoot xylem hydraulic conductivities.}, language = {en} } @misc{HellwigWalzMarkovic2019, author = {Hellwig, Niels and Walz, Ariane and Markovic, Danijela}, title = {Climatic and socioeconomic effects on land cover changes across Europe}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {764}, doi = {10.25932/publishup-43788}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437885}, pages = {22}, year = {2019}, abstract = {Land cover change is a dynamic phenomenon driven by synergetic biophysical and socioeconomic effects. It involves massive transitions from natural to less natural habitats and thereby threatens ecosystems and the services they provide. To retain intact ecosystems and reduce land cover change to a minimum of natural transition processes, a dense network of protected areas has been established across Europe. However, even protected areas and in particular the zones around protected areas have been shown to undergo land cover changes. The aim of our study was to compare land cover changes in protected areas, non-protected areas, and 1 km buffer zones around protected areas and analyse their relationship to climatic and socioeconomic factors across Europe between 2000 and 2012 based on earth observation data. We investigated land cover flows describing major change processes: urbanisation, afforestation, deforestation, intensification of agriculture, extensification of agriculture, and formation of water bodies. Based on boosted regression trees, we modelled correlations between land cover flows and climatic and socioeconomic factors. The results show that land cover changes were most frequent in 1 km buffer zones around protected areas (3.0\% of all buffer areas affected). Overall, land cover changes within protected areas were less frequent than outside, although they still amounted to 18,800 km2 (1.5\% of all protected areas) from 2000 to 2012. In some parts of Europe, urbanisation and intensification of agriculture still accounted for up to 25\% of land cover changes within protected areas. Modelling revealed meaningful relationships between land cover changes and a combination of influencing factors. Demographic factors (accessibility to cities and population density) were most important for coarse-scale patterns of land cover changes, whereas fine-scale patterns were most related to longitude (representing the general east/west economic gradient) and latitude (representing the north/south climatic gradient).}, language = {en} } @article{HellwigWalzMarkovic2019, author = {Hellwig, Niels and Walz, Ariane and Markovic, Danijela}, title = {Climatic and socioeconomic effects on land cover changes across Europe}, series = {PloS One}, volume = {14}, journal = {PloS One}, number = {7}, publisher = {PLOS 1}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0219374}, pages = {20}, year = {2019}, abstract = {Land cover change is a dynamic phenomenon driven by synergetic biophysical and socioeconomic effects. It involves massive transitions from natural to less natural habitats and thereby threatens ecosystems and the services they provide. To retain intact ecosystems and reduce land cover change to a minimum of natural transition processes, a dense network of protected areas has been established across Europe. However, even protected areas and in particular the zones around protected areas have been shown to undergo land cover changes. The aim of our study was to compare land cover changes in protected areas, non-protected areas, and 1 km buffer zones around protected areas and analyse their relationship to climatic and socioeconomic factors across Europe between 2000 and 2012 based on earth observation data. We investigated land cover flows describing major change processes: urbanisation, afforestation, deforestation, intensification of agriculture, extensification of agriculture, and formation of water bodies. Based on boosted regression trees, we modelled correlations between land cover flows and climatic and socioeconomic factors. The results show that land cover changes were most frequent in 1 km buffer zones around protected areas (3.0\% of all buffer areas affected). Overall, land cover changes within protected areas were less frequent than outside, although they still amounted to 18,800 km2 (1.5\% of all protected areas) from 2000 to 2012. In some parts of Europe, urbanisation and intensification of agriculture still accounted for up to 25\% of land cover changes within protected areas. Modelling revealed meaningful relationships between land cover changes and a combination of influencing factors. Demographic factors (accessibility to cities and population density) were most important for coarse-scale patterns of land cover changes, whereas fine-scale patterns were most related to longitude (representing the general east/west economic gradient) and latitude (representing the north/south climatic gradient).}, language = {en} } @misc{HellwigTattiSartorietal.2019, author = {Hellwig, Niels and Tatti, Dylan and Sartori, Giacomo and Anschlag, Kerstin and Graefe, Ulfert and Egli, Markus and Gobat, Jean-Michel and Broll, Gabriele}, title = {Modeling spatial patterns of humus forms in montane and subalpine forests}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1128}, issn = {1866-8372}, doi = {10.25932/publishup-47226}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472265}, pages = {17}, year = {2019}, abstract = {Humus forms are a distinctive morphological indicator of soil organic matter decomposition. The spatial distribution of humus forms depends on environmental factors such as topography, climate and vegetation. In montane and subalpine forests, environmental influences show a high spatial heterogeneity, which is reflected by a high spatial variability of humus forms. This study aims at examining spatial patterns of humus forms and their dependence on the spatial scale in a high mountain forest environment (Val di Sole/Val di Rabbi, Trentino, Italian Alps). On the basis of the distributions of environmental covariates across the study area, we described humus forms at the local scale (six sampling sites), slope scale (60 sampling sites) and landscape scale (30 additional sampling sites). The local variability of humus forms was analyzed with regard to the ground cover type. At the slope and landscape scale, spatial patterns of humus forms were modeled applying random forests and ordinary kriging of the model residuals. The results indicate that the occurrence of the humus form classes Mull, Mullmoder, Moder, Amphi and Eroded Moder generally depends on the topographical position. Local-scale patterns are mostly related to micro-topography (local accumulation and erosion sites) and ground cover, whereas slope-scale patterns are mainly connected with slope exposure and elevation. Patterns at the landscape scale show a rather irregular distribution, as spatial models at this scale do not account for local to slope-scale variations of humus forms. Moreover, models at the slope scale perform distinctly better than at the landscape scale. In conclusion, the results of this study highlight that landscape-scale predictions of humus forms should be accompanied by local- and slope-scale studies in order to enhance the general understanding of humus form patterns.}, language = {en} } @article{HelberDiasBarisellietal.2019, author = {Helber, Bernd and Dias, Bruno and Bariselli, Federico and Zavalan, Luiza F. and Pittarello, Lidia and Goderis, Steven and Soens, Bastien and McKibbin, Seann J. and Claeys, Philippe and Magin, Thierry E.}, title = {Analysis of meteoroid ablation based on plasma wind-tunnel experiments, surface characterization, and numerical simulations}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {876}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab16f0}, pages = {14}, year = {2019}, abstract = {Meteoroids largely disintegrate during their entry into the atmosphere, contributing significantly to the input of cosmic material to Earth. Yet, their atmospheric entry is not well understood. Experimental studies on meteoroid material degradation in high-enthalpy facilities are scarce and when the material is recovered after testing, it rarely provides sufficient quantitative data for the validation of simulation tools. In this work, we investigate the thermochemical degradation mechanism of a meteorite in a high-enthalpy ground facility able to reproduce atmospheric entry conditions. A testing methodology involving measurement techniques previously used for the characterization of thermal protection systems for spacecraft is adapted for the investigation of ablation of alkali basalt (employed here as meteorite analog) and ordinary chondrite samples. Both materials are exposed to a cold-wall stagnation point heat flux of 1.2 MW m(-2). Numerous local pockets that formed on the surface of the samples by the emergence of gas bubbles reveal the frothing phenomenon characteristic of material degradation. Time-resolved optical emission spectroscopy data of ablated species allow us to identify the main radiating atoms and ions of potassium, calcium, magnesium, and iron. Surface temperature measurements provide maximum values of 2280 K for the basalt and 2360 K for the chondrite samples. We also develop a material response model by solving the heat conduction equation and accounting for evaporation and oxidation reaction processes in a 1D Cartesian domain. The simulation results are in good agreement with the data collected during the experiments, highlighting the importance of iron oxidation to the material degradation.}, language = {en} } @article{HaberPohlmeierToetzkeLehmannetal.2019, author = {Haber-Pohlmeier, Sabina and T{\"o}tzke, Christian and Lehmann, E. and Kardjilov, Nikolay and Pohlmeier, A. and Oswald, Sascha}, title = {Combination of magnetic resonance imaging and neutron computed tomography for three-dimensional rhizosphere imaging}, series = {Vadose zone journal}, volume = {18}, journal = {Vadose zone journal}, number = {1}, publisher = {Soil Science Society of America}, address = {Madison}, issn = {1539-1663}, doi = {10.2136/vzj2018.09.0166}, pages = {11}, year = {2019}, abstract = {Core Ideas 3D MRI relaxation time maps reflect water mobility in root, rhizosphere, and soil. 3D NCT water content maps of the same plant complement relaxation time maps. The relaxation time T1 decreases from soil to root, whereas water content increases. Parameters together indicate modification of rhizosphere pore space by gel phase. The zone of reduced T1 corresponds to the zone remaining dry after rewetting. In situ investigations of the rhizosphere require high-resolution imaging techniques, which allow a look into the optically opaque soil compartment. We present the novel combination of magnetic resonance imaging (MRI) and neutron computed tomography (NCT) to achieve synergistic information such as water mobility in terms of three-dimensional (3D) relaxation time maps and total water content maps. Besides a stationary MRI scanner for relaxation time mapping, we used a transportable MRI system on site in the NCT facility to capture rhizosphere properties before desiccation and after subsequent rewetting. First, we addressed two questions using water-filled test capillaries between 0.1 and 5 mm: which root diameters can still be detected by both methods, and to what extent are defined interfaces blurred by these imaging techniques? Going to real root system architecture, we demonstrated the sensitivity of the transportable MRI device by co-registration with NCT and additional validation using X-ray computed tomography. Under saturated conditions, we observed for the rhizosphere in situ a zone with shorter T1 relaxation time across a distance of about 1 mm that was not caused by reduced water content, as proven by successive NCT measurements. We conclude that the effective pore size in the pore network had changed, induced by a gel phase. After rewetting, NCT images showed a dry zone persisting while the MRI intensity inside the root increased considerably, indicating water uptake from the surrounding bulk soil through the still hydrophobic rhizosphere. Overall, combining NCT and MRI allows a more detailed analysis of the rhizosphere's functioning.}, language = {en} } @article{GomezGarciaMeessenScheckWenderothetal.2019, author = {Gomez-Garcia, Angela Maria and Meeßen, Christian and Scheck-Wenderoth, Magdalena and Monsalve, Gaspar and Bott, Judith and Bernhardt, Anne and Bernal, Gladys}, title = {3-D Modeling of Vertical Gravity Gradients and the Delimitation of Tectonic Boundaries: The Caribbean Oceanic Domain as a Case Study}, series = {Geochemistry, geophysics, geosystems}, volume = {20}, journal = {Geochemistry, geophysics, geosystems}, number = {11}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2019GC008340}, pages = {5371 -- 5393}, year = {2019}, abstract = {Geophysical data acquisition in oceanic domains is challenging, implying measurements with low and/or nonhomogeneous spatial resolution. The evolution of satellite gravimetry and altimetry techniques allows testing 3-D density models of the lithosphere, taking advantage of the high spatial resolution and homogeneous coverage of satellites. However, it is not trivial to discretise the source of the gravity field at different depths. Here, we propose a new method for inferring tectonic boundaries at the crustal level. As a novelty, instead of modeling the gravity anomalies and assuming a flat Earth approximation, we model the vertical gravity gradients (VGG) in spherical coordinates, which are especially sensitive to density contrasts in the upper layers of the Earth. To validate the methodology, the complex oceanic domain of the Caribbean region is studied, which includes different crustal domains with a tectonic history since Late Jurassic time. After defining a lithospheric starting model constrained by up-to-date geophysical data sets, we tested several a-priory density distributions and selected the model with the minimum misfits with respect to the VGG calculated from the EIGEN-6C4 data set. Additionally, the density of the crystalline crust was inferred by inverting the VGG field. Our methodology enabled us not only to refine, confirm, and/or propose tectonic boundaries in the study area but also to identify a new anomalous buoyant body, located in the South Lesser Antilles subduction zone, and high-density bodies along the Greater, Lesser, and Leeward Antilles forearcs.}, language = {en} }