@misc{KupermanDambacherNuthmannetal.2010, author = {Kuperman, Victor and Dambacher, Michael and Nuthmann, Antje and Kliegl, Reinhold}, title = {The effect of word position on eye-movements in sentence and paragraph reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-56828}, year = {2010}, abstract = {The present study explores the role of the word position-in-text in sentence and paragraph reading. Three eye-movement data sets based on the reading of Dutch and German unrelated sentences reveal a sizeable, replicable increase in reading times over several words in the beginning and the end of sentences. The data from the paragraphbased English-language Dundee corpus replicate the pattern and also indicate that the increase in inspection times is driven by the visual boundaries of the text organized in lines, rather than by syntactic sentence boundaries. We argue that this effect is independent of several established lexical, contextual and oculomotor predictors of eye-movement behavior. We also provide evidence that the effect of word position-intext has two independent components: a start-up effect arguably caused by a strategic oculomotor program of saccade planning over the line of text, and a wrap-up effect originating in cognitive processes of comprehension and semantic integration.}, language = {en} } @misc{DambacherKliegl2007, author = {Dambacher, Michael and Kliegl, Reinhold}, title = {Synchronizing timelines: Relations between fixation durations and N400 amplitudes during sentence reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57212}, year = {2007}, abstract = {We examined relations between eye movements (single-fixation durations) and RSVP-based event-related potentials (ERPs; N400's) recorded during reading the same sentences in two independent experiments. Longer fixation durations correlated with larger N400 amplitudes. Word frequency and predictability of the fixated word as well as the predictability of the upcoming word accounted for this covariance in a path-analytic model. Moreover, larger N400 amplitudes entailed longer fixation durations on the next word, a relation accounted for by word frequency. This pattern offers a neurophysiological correlate for the lag-word frequency effect on fixation durations: Word processing is reliably expressed not only in fixation durations on currently fixated words, but also in those on subsequently fixated words.}, language = {en} } @misc{KlieglWeiDambacheretal.2011, author = {Kliegl, Reinhold and Wei, Ping and Dambacher, Michael and Yan, Ming and Zhou, Xiaolin}, title = {Experimental effects and individual differences in linear mixed models: Estimating the relationship between spatial, object, and attraction effects in visual attention}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-56859}, year = {2011}, abstract = {Linear mixed models (LMMs) provide a still underused methodological perspective on combining experimental and individual-differences research. Here we illustrate this approach with two-rectangle cueing in visual attention (Egly et al., 1994). We replicated previous experimental cue-validity effects relating to a spatial shift of attention within an object (spatial effect), to attention switch between objects (object effect), and to the attraction of attention toward the display centroid (attraction effect), also taking into account the design-inherent imbalance of valid and other trials. We simultaneously estimated variance/covariance components of subject-related random effects for these spatial, object, and attraction effects in addition to their mean reaction times (RTs). The spatial effect showed a strong positive correlation with mean RT and a strong negative correlation with the attraction effect. The analysis of individual differences suggests that slow subjects engage attention more strongly at the cued location than fast subjects. We compare this joint LMM analysis of experimental effects and associated subject-related variances and correlations with two frequently used alternative statistical procedures}, language = {en} } @misc{DambacherRolfsGoellneretal.2009, author = {Dambacher, Michael and Rolfs, Martin and G{\"o}llner, Kristin and Kliegl, Reinhold and Jacobs, Arthur M.}, title = {Event-related potentials reveal rapid verification of predicted visual input}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44953}, year = {2009}, abstract = {Human information processing depends critically on continuous predictions about upcoming events, but the temporal convergence of expectancy-based top-down and input-driven bottom-up streams is poorly understood. We show that, during reading, event-related potentials differ between exposure to highly predictable and unpredictable words no later than 90 ms after visual input. This result suggests an extremely rapid comparison of expected and incoming visual information and gives an upper temporal bound for theories of top-down and bottom-up interactions in object recognition.}, language = {en} } @book{Dambacher2010, author = {Dambacher, Michael}, title = {Bottom-up and top-down processes in reading : influences of frequency and predictability on event-related potentials and eye movements}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-059-5}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42024}, publisher = {Universit{\"a}t Potsdam}, pages = {239}, year = {2010}, abstract = {In reading, word frequency is commonly regarded as the major bottom-up determinant for the speed of lexical access. Moreover, language processing depends on top-down information, such as the predictability of a word from a previous context. Yet, however, the exact role of top-down predictions in visual word recognition is poorly understood: They may rapidly affect lexical processes, or alternatively, influence only late post-lexical stages. To add evidence about the nature of top-down processes and their relation to bottom-up information in the timeline of word recognition, we examined influences of frequency and predictability on event-related potentials (ERPs) in several sentence reading studies. The results were related to eye movements from natural reading as well as to models of word recognition. As a first and major finding, interactions of frequency and predictability on ERP amplitudes consistently revealed top-down influences on lexical levels of word processing (Chapters 2 and 4). Second, frequency and predictability mediated relations between N400 amplitudes and fixation durations, pointing to their sensitivity to a common stage of word recognition; further, larger N400 amplitudes entailed longer fixation durations on the next word, a result providing evidence for ongoing processing beyond a fixation (Chapter 3). Third, influences of presentation rate on ERP frequency and predictability effects demonstrated that the time available for word processing critically co-determines the course of bottom-up and top-down influences (Chapter 4). Fourth, at a near-normal reading speed, an early predictability effect suggested the rapid comparison of top-down hypotheses with the actual visual input (Chapter 5). The present results are compatible with interactive models of word recognition assuming that early lexical processes depend on the concerted impact of bottom-up and top-down information. We offered a framework that reconciles the findings on a timeline of word recognition taking into account influences of frequency, predictability, and presentation rate (Chapter 4).}, language = {en} }