@misc{EccardHerdeSchusteretal.2022, author = {Eccard, Jana and Herde, Antje and Schuster, Andrea C. and Liesenjohann, Thilo and Knopp, Tatjana and Heckel, Gerald and Dammhahn, Melanie}, title = {Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55886}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-558866}, pages = {1 -- 15}, year = {2022}, abstract = {Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive "fast" types at one end of the spectrum to less fecund, long-lived, shy, plastic "slow" types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95\% and 50\% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life.}, language = {en} } @misc{LiesenjohannLiesenjohannPalmeetal.2013, author = {Liesenjohann, Monique and Liesenjohann, Thilo and Palme, Rupert and Eccard, Jana}, title = {Differential behavioural and endocrine responses of common voles (Microtus arvalis) to nest predators and resource competitors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401184}, pages = {10}, year = {2013}, abstract = {Background: Adaptive behavioural strategies promoting co-occurrence of competing species are known to result from a sympatric evolutionary past. Strategies should be different for indirect resource competition (exploitation, e.g., foraging and avoidance behaviour) than for direct interspecific interference (e.g., aggression, vigilance, and nest guarding). We studied the effects of resource competition and nest predation in sympatric small mammal species using semi-fossorial voles and shrews, which prey on vole offspring during their sensitive nestling phase. Experiments were conducted in caged outdoor enclosures. Focus common vole mothers (Microtus arvalis) were either caged with a greater white-toothed shrew (Crocidura russula) as a potential nest predator, with an herbivorous field vole (Microtus agrestis) as a heterospecific resource competitor, or with a conspecific resource competitor. Results: We studied behavioural adaptations of vole mothers during pregnancy, parturition, and early lactation, specifically modifications of the burrow architecture and activity at burrow entrances. Further, we measured pre- and postpartum faecal corticosterone metabolites (FCMs) of mothers to test for elevated stress hormone levels. Only in the presence of the nest predator were prepartum FCMs elevated, but we found no loss of vole nestlings and no differences in nestling body weight in the presence of the nest predator or the heterospecific resource competitor. Although the presence of both the shrew and the field vole induced prepartum modifications to the burrow architecture, only nest predators caused an increase in vigilance time at burrow entrances during the sensitive nestling phase. Conclusion: Voles displayed an adequate behavioural response for both resource competitors and nest predators. They modified burrow architecture to improve nest guarding and increased their vigilance at burrow entrances to enhance offspring survival chances. Our study revealed differential behavioural adaptations to resource competitors and nest predators.}, language = {en} } @phdthesis{Liesenjohann2010, author = {Liesenjohann, Thilo}, title = {Foraging in space and time}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-48562}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {All animals are adapted to the environmental conditions of the habitat they chose to live in. It was the aim of this PhD-project, to show which behavioral strategies are expressed as mechanisms to cope with the constraints, which contribute to the natural selection pressure acting on individuals. For this purpose, small mammals were exposed to different levels and types of predation risk while actively foraging. Individuals were either exposed to different predator types (airborne or ground) or combinations of both, or to indirect predators (nest predators). Risk was assumed to be distributed homogeneously, so changing the habitat or temporal adaptations where not regarded as potential options. Results show that wild-caught voles have strategic answers to this homogeneously distributed risk, which is perceived by tactile, olfactory or acoustic cues. Thus, they do not have to know an absolut quality (e.g., in terms of food provisioning and risk levels of all possible habitats), but they can adapt their behavior to the actual circumstances. Deriving risk uniform levels from cues and adjusting activity levels to the perceived risk is an option to deal with predators of the same size or with unforeseeable attack rates. Experiments showed that as long as there are no safe places or times, it is best to reduce activity and behave as inconspicuous as possible as long as the costs of missed opportunities do not exceed the benefits of a higher survival probability. Test showed that these costs apparently grow faster for males than for females, especially in times of inactivity. This is supported by strong predatory pressure on the most active groups of rodents (young males, sexually active or dispersers) leading to extremely female-biased operative sex ratios in natural populations. Other groups of animals, those with parental duties such as nest guarding, for example, have to deal with the actual risk in their habitat as well. Strategies to indirect predation pressure were tested by using bank vole mothers, confronted with a nest predator that posed no actual threat to themselves but to their young (Sorex araneus). They reduced travelling and concentrated their effort in the presence of shrews, independent of the different nutritional provisioning of food by varying resource levels due to the different seasons. Additionally, they exhibited nest-guarding strategies by not foraging in the vicinity of the nest site in order to reduce conspicuous scent marks. The repetition of the experiment in summer and autumn showed that changing environmental constraints can have a severe impact on results of outdoor studies. In our case, changing resource levels changed the type of interaction between the two species. The experiments show that it is important to analyze decision making and optimality models on an individual level, and, when that is not possible (maybe because of the constraints of field work), groups of animals should be classified by using the least common denominator that can be identified (such as sex, age, origin or kinship). This will control for the effects of the sex or stage of life history or the individual´s reproductive and nutritional status on decision making and will narrow the wide behavioral variability associated with the complex term of optimality.}, language = {en} }