@article{ValenteEtiennePhillimore2014, author = {Valente, Luis M. and Etienne, Rampal S. and Phillimore, Albert B.}, title = {The effects of island ontogeny on species diversity and phylogeny}, series = {Proceedings of the Royal Society of London : B, Biological sciences}, volume = {281}, journal = {Proceedings of the Royal Society of London : B, Biological sciences}, number = {1784}, publisher = {Royal Society}, address = {London}, issn = {0962-8452}, doi = {10.1098/rspb.2013.3227}, pages = {9}, year = {2014}, abstract = {A major goal of island biogeography is to understand how island communities are assembled over time. However, we know little about the influence of variable area and ecological opportunity on island biotas over geological time-scales. Islands have limited life spans, and it has been posited that insular diversity patterns should rise and fall with an island's ontogeny. The potential of phylogenies to inform us of island ontogenetic stage remains unclear, as we lack a phylogenetic framework that focuses on islands rather than clades. Here, we present a parsimonious island-centric model that integrates phylogeny and ontogeny into island biogeography and can incorporate a negative feedback of diversity on species origination. This framework allows us to generate predictions about species richness and phylogenies on islands of different ages. We find that peak richness lags behind peak island area, and that endemic species age increases with island age on volcanic islands. When diversity negatively affects rates of immigration and cladogenesis, our model predicts speciation slowdowns on old islands. Importantly, we find that branching times of in situ radiations can be informative of an island's ontogenetic stage. This novel framework provides a quantitative means of uncovering processes responsible for island biogeography patterns using phylogenies.}, language = {en} } @article{ValentePhillimoreEtienne2015, author = {Valente, Luis M. and Phillimore, Albert B. and Etienne, Rampal S.}, title = {Equilibrium and non-equilibrium dynamics simultaneously operate in the Gal{\´a}pagos islands}, series = {Ecology letters}, volume = {18}, journal = {Ecology letters}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1461-0248}, doi = {10.1111/ele.12461}, pages = {844 -- 852}, year = {2015}, abstract = {Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Gal{\´a}pagos, this idea remains untested. Here, we reconstruct the temporal accumulation of terrestrial bird species of the Gal{\´a}pagos using a novel phylogenetic method that estimates rates of biota assembly for an entire community. We show that species richness on the archipelago is in an ascending phase and does not tend towards equilibrium. The majority of the avifauna diversifies at a slow rate, without detectable ecological limits. However, Darwin's finches form an exception: they rapidly reach a carrying capacity and subsequently follow a coalescent-like diversification process. Together, these results suggest that avian diversity of remote islands is rising, and challenge the mutual exclusivity of the non-equilibrium and equilibrium ecological paradigms.}, language = {en} } @misc{ValentePhillimoreEtienne2015, author = {Valente, Luis M. and Phillimore, Albert B. and Etienne, Rampal S.}, title = {Equilibrium and non-equilibrium dynamics simultaneously operate in the Gal{\´a}pagos islands}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93525}, pages = {9}, year = {2015}, abstract = {Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Gal{\´a}pagos, this idea remains untested. Here, we reconstruct the temporal accumulation of terrestrial bird species of the Gal{\´a}pagos using a novel phylogenetic method that estimates rates of biota assembly for an entire community. We show that species richness on the archipelago is in an ascending phase and does not tend towards equilibrium. The majority of the avifauna diversifies at a slow rate, without detectable ecological limits. However, Darwin's finches form an exception: they rapidly reach a carrying capacity and subsequently follow a coalescent-like diversification process. Together, these results suggest that avian diversity of remote islands is rising, and challenge the mutual exclusivity of the non-equilibrium and equilibrium ecological paradigms.}, language = {en} }